Skip to main content
Log in

Development of an Engine Calibration Model Using Gaussian Process Regression

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

To enhance the calibration efficiency, reduce the fuel consumption and improve the emission performance of the engine, a calibration method using Gaussian Process Regression (GPR) is proposed in this work. First, the design of experiment (DoE) is constructed by using the Space-filling method, and the engine bench sampling test is implemented according to results of DoE. Then, the square exponential covariance function is selected through the comparison of four covariance functions, and the corresponding hyper-parameters are optimized by using Newton gradient algorithm. Finally, the GPR model of the engine is established and its calibration performance is validated by the experimental data. The comparison shows that the performance of the developed GPR model is superior to the Polynomial model and Neural Network model, whose coefficient of determination (R2) of Fuel Consumption (FC), NOx emission (NOx) and Soot emission (Soot) are up to 0.9980, 0.9326 and 0.9247. The case study demonstrates that the virtual calibration optimization based on GPR model improves the fuel consumption performance greatly, while taking NOx and Soot emission indicators into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DoE:

design of experiment

NN:

neural network

SVM:

support vector machine

GPR:

gaussian process regression

GP:

gaussian process

SGD:

stochastic gradient descent

RMSE:

root mean square error

MAE:

mean absolute error

ECU:

engine control unit

PR:

polynomial regression

FC:

fuel consumption

NOx:

NOx emission

Soot:

soot emission

References

  • Aran, V. and Unel, M. (2018). Gaussian process regression feedforward controller for diesel engine airpath. Int. J. Automotive Technology 19, 4, 635–642.

    Article  Google Scholar 

  • Bachoc, F., Gamboa, F., Loubes, J. M. and Venet, N. (2018). A Gaussian process regression model for distribution inputs. IEEE Trans. Information Theory 64, 10, 6620–6637.

    Article  MathSciNet  Google Scholar 

  • Belgiorno, G., Dimitrakopoulos, N., Di Blasio, G., Beatrice, C., Tunestål, P. and Tunér, M. (2018). Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine. Applied Energy, 228, 2221–2234.

    Article  Google Scholar 

  • Bilionis, I. and Zabaras, N. (2012). Multi-output local Gaussian process regression: Applications to uncertainty quantification. J. Computational Physics 231, 17, 5718–5746.

    Article  MathSciNet  Google Scholar 

  • Bu, Y. and Pan, J. (2015). Stellar atmospheric parameter estimation using Gaussian process regression. Monthly Notices of the Royal Astronomical Society 447, 1, 256–265.

    Article  Google Scholar 

  • Cai, S., Liu, B., Zhang, F. and Cui, T. (2014). Research on model-based calibration method of electronic control unit pump diesel engine. IEEE Conf. Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing, China.

  • Chai, Z. G., Zhang, F. J., Liu, B. L., Huang, Y. and Fu, G. (2015). Application study of kriging model in common rail diesel engine calibration. Trans. Beijing Institute of Technology 35, 3, 242–245.

    Google Scholar 

  • Chung, J. W., Kim, N. H., Kim, D. J. and Jang, S. S. (2018). Mean value WGT diesel engine calibration model for effective simulation research. Int. J. Automotive Technology 19, 2, 209–220.

    Article  Google Scholar 

  • de Santana, L. M. Q., Santos, R. M., Matos, L. N. and Macedo, H. T. (2018). Deep neural networks for acoustic modeling in the presence of noise. IEEE Latin America Trans. 16, 3, 918–925.

    Article  Google Scholar 

  • Fortuna, T., Koegeler, H. M., Kordon, M. and Vitale, G. (2015). DoE and beyond—evolution of the model-based development approach. ATZ Worldwide 117, 2, 30–35.

    Article  Google Scholar 

  • Grasreiner, S., Neumann, J., Wensing, M. and Hasse, C. (2017). Model-based virtual engine calibration with the help of phenomenological methods for spark-ignited engines. Applied Thermal Engineering, 121, 190–199.

    Article  Google Scholar 

  • Guo, W., Pan, T., Li, Z. and Chen, S. (2019). Model calibration method for soft sensors using adaptive gaussian process regression. IEEE Access, 7, 168436–168443.

    Article  Google Scholar 

  • Huang, Y. and Ma, F. (2016). Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine. Int. J. Hydrogen Energy 41, 26, 11308–11320.

    Article  Google Scholar 

  • Isermann, R. and Sequenz, H. (2016). Model-based development of combustion-engine control and optimal calibration for driving cycles: general procedure and application. IFAC-PapersOnLine 49, 11, 633–640.

    Article  Google Scholar 

  • Jeong, K. and Choi, S. (2019). Model-based sensor fault diagnosis of vehicle suspensions with a support vector machine. Int. J. Automotive Technology 20, 5, 961–970.

    Article  Google Scholar 

  • Kannan, G. R., Balasubramanian, K. R. and Anand, R. (2013). Artificial neural network approach to study the effect of injection pressure and timing on diesel engine performance fueled with biodiesel. Int. J. Automotive Technology 14, 4, 507–519.

    Article  Google Scholar 

  • Lee, J. H. and Lee, Y. Z. (2015). Development of a diesel cold performance evaluation method by use of design of experiment. Int. J. Automotive Technology 16, 5, 807–812.

    Article  Google Scholar 

  • Lee, S. I., Mortazavi, B., Hoffman, H. A., Lu, D. S., Li, C., Paak, B. H., Garst, J. H., Razaghy, M., Espinal, M., Park, E., Lu, D. C. and Sarrafzadeh, M. (2014). A prediction model for functional outcomes in spinal cord disorder patient using gaussian process regression. IEEE J. Biomedical and Health Informatics 20, 1, 91–99.

    Article  Google Scholar 

  • Liu, D., Pang, J., Zhou, J., Peng, Y. and Pecht, M. (2013). Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability 53, 6, 832–839.

    Article  Google Scholar 

  • Liu, L. and Arcone, S. A. (2013). Forward and inverse problems in GPR research. J. Applied Geophysics, 99, 66–67.

    Article  Google Scholar 

  • Lu, Z., Sun, J. and Butts, K. (2010). Application of linear programming SVM-ARMA2K for dynamic engine modeling. American Control Conf. Baltimore, MD, USA.

  • Ma, H., Li, Z., Tayarani, M., Lu, G., Xu, H. and Yao, X. (2019). Model-based computational intelligence multi-objective optimization for gasoline direct injection engine calibration. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 233, 6, 1391–1402.

    Google Scholar 

  • Martínez-Morales, J. D., Palacios-Hernández, E. R. and Velázquez-Carrillo, G. A. (2015). Modeling engine fuel consumption and NOx with RBF neural network and MOPSO algorithm. Int. J. Automotive Technology 16, 6, 1041–1049.

    Article  Google Scholar 

  • Millo, F., Arya, P. and Mallamo, F. (2018). Optimization of automotive diesel engine calibration using genetic algorithm techniques. Energy, 158, 807–819.

    Article  Google Scholar 

  • Murgovski, N., Grahn, M., Johannesson, L. M. and McKelvey, T. (2014). Automated engine calibration of hybrid electric vehicles. IEEE Trans. Control Systems Technology 23, 3, 1063–1074.

    Article  Google Scholar 

  • Nikzadfar, K. and Shamekhi, A. H. (2019). Investigating a new model-based calibration procedure for optimizing the emissions and performance of a turbocharged diesel engine. Fuel, 242, 455–469.

    Article  Google Scholar 

  • Nishio, Y., Murata, Y., Yamaya, Y. and Kikuchi, M. (2018). Optimal calibration scheme for map-based control of diesel engines. Science China Information Sciences 61, 7, 1–14.

    Article  Google Scholar 

  • Park, S., Kim, Y., Woo, S. and Lee, K. (2017). Optimization and calibration strategy using design of experiment for a diesel engine. Applied Thermal Engineering, 123, 917–928.

    Article  Google Scholar 

  • Ranganathan, A., Yang, M. H. and Ho, J. (2010). Online sparse Gaussian process regression and its applications. IEEE Trans. Image Processing 20, 2, 391–404.

    Article  MathSciNet  Google Scholar 

  • Richardson, R. R., Osborne, M. A. and Howey, D. A. (2017). Gaussian process regression for forecasting battery state of health. J. Power Sources, 357, 209–219.

    Article  Google Scholar 

  • Sheng, H., Xiao, J., Cheng, Y., Ni, Q. and Wang, S. (2018). Short-term solar power forecasting based on weighted Gaussian process regression. IEEE Trans. Industrial Electronics 65, 1, 300–308.

    Article  Google Scholar 

  • Toyoda, M. and Shen, T. (2016). D-optimization based mapping calibration of air mass flow in combustion engines. European Control Conf. (ECC). Aalborg, Denmark.

  • Turkson, R. F., Yan, F., Ali, M. K. A. and Hu, J. (2016). Artificial neural network applications in the calibration of spark-ignition engines: An overview. Engineering Science and Technology, an Int. J. 19, 3, 1346–1359.

    Article  Google Scholar 

  • van Dooren, S., Balerna, C., Salazar, M., Amstutz, A. and Onder, C. H. (2020). Optimal diesel engine calibration using convex modelling of pareto frontiers. Control Engineering Practice, 96, 104313.

    Article  Google Scholar 

  • Wong, P. K., Gao, X. H., Wong, K. I. and Vong, C. M. (2018). Online extreme learning machine based modeling and optimization for point-by-point engine calibration. Neurocomputing, 277, 187–197.

    Article  Google Scholar 

  • Wong, P. K., Vong, C. M. and Ip, W. F. (2010). Modelling of petrol engine power using incremental least-square support vector machines for ECU calibration. Int. Conf. Optoelectronics and Image Processing. Haiko, Hainan, China.

  • Xiloyannis, M., Gavriel, C., Thomik, A. A. and Faisa, A. A. (2015). Gaussian process regression for accurate prediction of prosthetic limb movements from the natural kinematics of intact limbs. 7th Int. IEEE/EMBS Conf. Neural Engineering (NER). Montpellier, France.

  • Zhou, G., Liu, R., Ping, Z., Gang, L. and Li, J. A. (2012). The calibration of high-pressure common-rail diesel engine based on polynomial regression model. Automotive Engineering 34, 4, 301–305.

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61873113, the Key R&D Program of Jiangsu Province, China under Grant BE2018370, and the Key R&D Program of Zhenjiang under Grant GY2018013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhong Pan.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Cai, Y. & Chen, S. Development of an Engine Calibration Model Using Gaussian Process Regression. Int.J Automot. Technol. 22, 327–334 (2021). https://doi.org/10.1007/s12239-021-0031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-021-0031-5

Key words

Navigation