Skip to main content
Log in

Investigation of Nickel Surface Layers Formed in the Course of Self-Oscillatory Methane Oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Self-oscillatory methane oxidation over Ni foil at 750°C for 1 h resulted in the formation of a porous layer with a depth of 10–12 μm. The layer depth did not increase as the self-oscillatory reaction time was increased to 2–3 h. The porous layer consisted of nickel oxide crystals 100–200 nm in size or metallic Ni crystallites (indistinct crystals) of the above size in an oxidative gas atmosphere or a reducing atmosphere, respectively. The formation of the layer caused a great increase in the catalytic activity of nickel in the carbon dioxide conversion of methane (CDCM). Immediately after the self-oscillatory reaction, the crystals in the porous layer were in an oxidized state. In this state, they can remain at 750°C in a flow of an inert gas or CO2 without catalytic activity losses. On the contrary, the oxide crystals were reduced to the metal in a reducing atmosphere (H2, CH4), and they gradually stuck together to form a spongy structure whose surface area was much lower than that of the initial oxidized sample. A decrease in the catalytic activity of nickel after reducing pretreatment and in the course of the catalytic CDCM (where the catalyst was also reduced) confirmed the above conclusion. The porous layer on the Ni surface was similar to a Ni foam sample with pores of ~1 μm (metallic membrane) in catalytic and reactive properties, but it differed in a limited depth on the surface of the bulk metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ashok, J., Wai, M.H., and Kawi, S., ChemCatChem, 2018, vol. 10, p. 3927.

    Article  CAS  Google Scholar 

  2. Bkour, Q., Marin-Flores, O.G., Graham, T.R., Ziaei, P., Saunders, S.R., Norton, M.G., and Ha, S., Appl. Catal., A, 2017, vol. 546, p. 126.

  3. Li, J. and Lu, G., Appl. Catal., A, 2004, vol. 273, p. 163.

  4. Yao, Y.-F.Y. and Kummer, J.T., J. Catal., 1973, vol. 28, p. 124.

    Article  CAS  Google Scholar 

  5. Seo, H.O., Catalysts, 2018, vol. 8, p. 110.

    Article  Google Scholar 

  6. Bychkov, V.Yu., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 43, no. 1, p. 86.

    Article  CAS  Google Scholar 

  7. Simonov, M.N., Rogov, V.A., Smirnova, M.Yu., and Sadykov, V.A., Catalysts, 2017, vol. 7, p. 268.

    Article  Google Scholar 

  8. Matus, E.V., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Kerzhentsev, M.A., Ismagilov, Z.R., Nefedova, D.V., and Nikitin, A.P., Kinet. Catal., 2019, vol. 60, no. 4, p. 496.

    Article  CAS  Google Scholar 

  9. Matus, E.V., Shlyakhtina, A.S., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Kerzhentsev, M.A., Ismagilov, Z.R., Nikitin, A.P., and Bharali, P., Kinet. Catal., 2019, vol. 60, no. 2, p. 221.

    Article  CAS  Google Scholar 

  10. Jalama, K., Catal. Rev., 2017, vol. 59, no. 2, p. 95.

    Article  CAS  Google Scholar 

  11. Popov, Y.V., Mokhov, V.M., Nebykov, D.N., Latyshova, S.E., Shcherbakova, K.V., and Panov, A.O., Kinet. Catal., 2018, vol. 59, no. 4, p. 444.

    Article  CAS  Google Scholar 

  12. Chesnokov, V.V., Chichkan, A.S., Paukshtis, E.A., Chesalov, Y.A., and Krasnov, A.V., Kinet. Catal., 2019, vol. 60, no. 4, p. 439.

    Article  CAS  Google Scholar 

  13. Golubina, E.V., Lokteva, E.S., Kavalerskaya, N.E., and Maslakov, K.I., Kinet. Catal., 2020, vol. 61, no. 3, p. 444.

    Article  CAS  Google Scholar 

  14. Zhang, X.L., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2002, vol. 83, p. 149.

    Article  CAS  Google Scholar 

  15. Tulenin, Yu.P., Sinev, M.Yu., Savkin, V.V., and Korchak, V.N., Catal. Today, 2004, vols. 91–92, p. 155.

    Article  Google Scholar 

  16. Gladky, A.Yu., Kaichev, V.V., Ermolaev, V.K., Bukhtiyarov, V.I., and Parmon, V.N., Kinet. Catal., 2005, vol. 46, p. 251.

    Article  CAS  Google Scholar 

  17. Bychkov, V.Yu., Tyulenin, Yu.P., Korchak, V.N., and Aptekar, E.L., App. Catal., A, 2006, vol. 30, p. 21.

  18. Saraev, A.A., Vinokurov, Z.S., Shmakov, A.N., Kaichev, V.V., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, no. 6, p. 810.

    Article  CAS  Google Scholar 

  19. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Gordienko, Yu.A., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 653.

    Article  CAS  Google Scholar 

  20. Kaichev, V.V., Teschner, D., Saraev, A.A., Kosolobov, S.S., Gladky, A.Yu., Prosvirin, I.P., Rudina, N.A., Ayupov, A.B., Blume, R., Hövecker, M., Knop-Gericke, A., Schlögl, R., Latyshev, A.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 334, p. 23.

    Article  CAS  Google Scholar 

  21. Saraev, A.A., Kaichev, V.V., Bukhtiyarov, V.I., and Kosolobov, S.S., Kinet. Catal., 2015, vol. 56, no. 5, p. 598.

    Article  CAS  Google Scholar 

  22. Kaichev, V.V., Gladky, A.Yu., Saraev, A.A., Kosolobov, S.S., Sherstyuk, O.V., and Bukhtiyarov, V.I., Top. Catal., 2020, vol. 63, p. 24.

    Article  CAS  Google Scholar 

  23. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Sokolov, S., and Korchak, V.N., Catal. Lett., 2017, vol. 147, p. 1019.

    Article  CAS  Google Scholar 

  24. Bychkov, V.Yu., Tyulenin, Yu.P., Slinko, M.M., and Korchak, V.N., Appl. Catal., A, 2007, vol. 321, p. 180.

  25. Saraev, A.A., Vinokurov, Z.S., Kaichev, V.V., Shmakov, A.N., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2017, vol. 7, p. 1646.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-03-00096) and carried out within the framework of state contract V. 46.13, 0082-2014-007 (project no. AAAA-A18-11802089010503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bychkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations: CDCM, carbon dioxide conversion of methane; SEM, scanning electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, V.Y., Tulenin, Y.P., Gorenberg, A.Y. et al. Investigation of Nickel Surface Layers Formed in the Course of Self-Oscillatory Methane Oxidation. Kinet Catal 62, 181–187 (2021). https://doi.org/10.1134/S0023158421010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421010018

Keywords:

Navigation