Skip to main content
Log in

Activity of 5% CuO/Ce1 xPrxOy Catalysts in the Reaction of Carbon Monoxide Oxidation with Oxygen in an Excess of Hydrogen

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The 5% CuO/Ce1 – xPrxOy catalysts were synthesized on the basis of CeO2 and PrO2 oxides and Ce1 – xPrxOy solid solutions with x = 0.2, 0.5, and 0.8. Highly dispersed copper oxide was present in the 5%CuO/Ce1 – xPrxOy catalysts. Upon interaction with the support, it formed active oxygen, which participated in CO chemisorption and a low-temperature reaction of CO oxidation in the presence of hydrogen. The highest conversion of CO in an excess of H2mах(Т)), which was close to 100%, was obtained at temperatures of 120–160°C on a 5% CuO/CeO2 catalyst. Upon the modification of CeO2 with Pr cations, 5% Ce0.2Pr0.8Oy sample, it decreased to 65% at 220°C due to an increase in the bond strength of oxygen in copper-containing centers. A maximum conversion of CO (93%) on a sample of 5% CuO/PrOy was detected at 200°C. Upon the modification of PrO2 with Ce cations, the activity of 5% CuO/Ce0.5Pr0.5Oy and 5% CuO/Ce0.2Pr0.8Oy catalysts did not exceed that of 5% CuO/PrOy. The forms of CO and CO2 adsorption on 5% CuO/Ce1 – xPrxOy samples were studied using the TPD method. In a range of 170–500°C, the desorption of oxygen from the supports of 5% CuO/Ce0.5Pr0.5Oy and 5% CuO/PrOy samples was observed. The occurrence of the reaction on 5% CuO/Ce1 – xPrxOy catalysts was discussed. With consideration for the properties of CO complexes formed on copper-containing oxidation and adsorption centers, their participation in the reaction of low-temperature oxidation in hydrogen was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Olah, G.A., Goeppert, A., and Prakash, S., Beyond Oil and Gas: The Methanol Economy, Weinheim: Wiley, 2006.

    Google Scholar 

  2. Mishra, A. and Prasad, R., Bull. Chem. React. Eng. Catal., 2011, vol. 6, no. 1, p. 1.

    Article  CAS  Google Scholar 

  3. Yu, K., Lou, L.-L., Liu, S., and Zhou, W., Adv. Sci., 2020, vol. 7, p. 1.

    Google Scholar 

  4. Martinez-Arias, A., Gamarra, D., Hungria, A.B., Fernandez-Garcia, M., Munuera, G., Hornes, A., Bera, P., Conesa, J.C., and Camara, A.L., Catalysts, 2013, vol. 3, p. 378.

    Article  CAS  Google Scholar 

  5. Il’ichev, A.N., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 1, p. 115.

    Article  Google Scholar 

  6. Venkataswany, P., Jampaiah, D., Aniz, C.U., and Reddy, B.M., J. Chem. Sci., 2015, vol. 127, no. 8, p. 1347.

    Article  Google Scholar 

  7. Kim, H.J., Jang, M.G., Shin, D., and Han, J.W., ChemCatChem, 2020, vol. 12, p. 11.

    Article  CAS  Google Scholar 

  8. Singhania, A., Ind. Eng. Chem. Res., 2017, vol. 56, no. 46, p. 13 594.

    Article  Google Scholar 

  9. Malyutin, A.V., Liberman, E.Yu., Mikhailichenko, A.I., Avetisov, I.Kh., Koshkin, A.G., and Kon’kova, T.V., Katal. Prom-sti., 2013, no. 3, p. 54.

  10. Guo, X., Qiu, Z., Mao, Z.Q., and Zhou, R., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 40, p. 25 983.

    Article  Google Scholar 

  11. Zhao, Z., Wang, R., Zhao, Q., Wang, E., Su, H., and Zeng, S., Adv. Mater. Res., 2013, vol. 773, p. 601.

    Article  CAS  Google Scholar 

  12. Il’ichev, A.N., Firsova, A.A., and Korchak, V.N., Kinet. Catal., 2006, vol. 47, no. 4, p. 585.

    Article  Google Scholar 

  13. Powder Diffraction Fale. Alphabetical Indexes. Inorganic phases, JCPDS, Pennsylvania: International Center for Diffraction Data, 1983.

  14. Mirkin, L.I., Spravochnik po rentgenostrukturnomu analizu polikristallov (Handbook on X-ray Structural Analysis of Polycrystals), Moscow: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury, 1961.

  15. Tret’yakov, I.I., Shub, B.R., and Sklyarov, A.V., Zh. Fiz. Khim., 1970, vol. 44, p. 2112.

    Google Scholar 

  16. Handbook of Preparative Inorganic Chemistry, Brauer, G., Ed., Amsterdam: Elsevier, 1985, vols. 2–3.

  17. Narula, C.K., Haack, L.P., Chun, W., Jen, H.-W., and Graham, G.W., J. Phys. Chem. B, 1999, vol. 103, p. 3634.

    Article  CAS  Google Scholar 

  18. Firsova, A.A., Ilichev, A.N., Khomenko, T.I., Gorobinskii, L.V., Maksimov, Yu.V., Suzdalev, I.P., and Korchak, V.N., Kinet. Catal., 2007, vol. 48, no. 2, p. 282.

    Article  CAS  Google Scholar 

  19. Fornasiero, P., Balducci, G., Monte, R.D., Kaspar, J., Sergo, V., Gubitosa, G., Ferrero, A., and Graziani, M., J. Catal., 1996, vol. 164, p. 173.

    Article  CAS  Google Scholar 

  20. Manzoli, M., Monte, R.D., Boccuzzi, F., Coluccia, S., and Kaspar, J., Appl. Catal., B, 2005, vol. 61, p. 192.

    Article  CAS  Google Scholar 

  21. Luo, M.F., Ma, J.-M., Lu, J.-Q., Song, Y.-P., and Wang, Y.-J., J. Catal., 2007, vol. 246, p. 52

    Article  CAS  Google Scholar 

  22. Gomez-Cortes, A., Marquez, Y., Arenas-Alatorre, J., and Diaz, G., Catal. Today, 2008, vol. 133−135, p. 743.

  23. Polster, C.S., Naier, H., and Baertsch, C.D., J. Catal., 2009, vol. 266, p. 308.

    Article  CAS  Google Scholar 

  24. Moretti, E., Storaro, L., Talon, A., Lenarda, M., Riello, P., Frattini, R., Yuso, M.V.M., Jimenez-Lopez, A., Rodriguez-Gastellon, E., Ternero, F., Caballero, A., and Holgado, J.P., Appl. Catal., B, 2011, vol. 102, p. 627.

    Article  CAS  Google Scholar 

  25. Arango-Diaz, A., Cecilia, J.A., Moretti, E., Talon, A., Nunez, P., Morrero-Jerez, J., Jimenez-Jimenez, J., Jimenez-Lopez, A., and Rodriguez-Gastellon, E., Int. J. Hydrogen Energy, 2014, vol. 39, p. 4102.

    Article  CAS  Google Scholar 

  26. Wang, S.-P., Zheng, X.-C., Wang, X.-Y., Wang, S.-R., Zhang, S.-M., Yu, L.-H., Huang, W.-P., and Wu, S.-H., Catal. Lett., 2005, vol. 105, nos. 3−4, p. 163.

    Article  CAS  Google Scholar 

  27. Matyshak, V.A. and Sil’chenkova, O.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 573.

    Article  CAS  Google Scholar 

  28. Ivanova, A.S., Kinet. Catal., 2009, vol. 50, no. 6, p. 797.

    Article  CAS  Google Scholar 

  29. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Mosvow: Akademkniga, 2004, p. 679.

  30. Il’ichev, A.N., Bykhovskii, M.Ya., Fattakhova, Z.T., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2018, vol. 59, no. 2, p. 179.

    Article  Google Scholar 

  31. Skarman, B., Grandjean, D., Benfield, R., Hinz, A., Andersson, A., and Wallenberg, L. R., J. Catal., 2002, vol. 211, p. 119.

    CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state contract of the Federal Agency for Scientific Organizations of Russia (V.46.13, 0082-2014-0007, project no. AAAA-A18-118020890105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Il’ichev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and designations: TPR-H2, temperature-programmed reduction with hydrogen; TPD, temperature-programmed desorption; BET, Brunauer–Emmett–Teller method; γ, conversion of CO, %; β, conversion of О2, %; \(N_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}^{{{\text{des}}}}{\text{,}}\) amount of desorbed CO2; \(N_{{{\text{CO}}}}^{{{\text{des}}}}{\text{,}}\) amount of desorbed CO; \(N_{{{\text{CO + C}}{{{\text{O}}}_{{\text{2}}}}}}^{{{\text{des}}}}{\text{,}}\) total amount of desorbed gas; L, crystallite size; Ssp, specific surface area; \({{N}_{{{{{\text{H}}}_{{\text{2}}}}}}}{\text{,}}\) total amount of absorbed hydrogen per square meter of oxide; Nc, calculated amount of hydrogen required for the reduction of copper oxide in the sample; \({{V}_{{{{{\text{H}}}_{{\text{2}}}}}}}{\text{,}}\) rate of oxygen consumption in reaction with hydrogen; and VCO, rate of oxygen consumption in reaction with carbon monoxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.N., Bykhovsky, M.Y., Fattakhova, Z.T. et al. Activity of 5% CuO/Ce1 xPrxOy Catalysts in the Reaction of Carbon Monoxide Oxidation with Oxygen in an Excess of Hydrogen. Kinet Catal 62, 116–126 (2021). https://doi.org/10.1134/S0023158421010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421010031

Keywords:

Navigation