Skip to main content
Log in

Discriminative correlation tracking based on spatial attention mechanism for low-resolution imaging systems

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Low-resolution images are characterized by blurring, less texture information, and lack of detail. Visual object tracking for low-resolution imaging systems remains a challenging task. In this paper, we propose a discriminative correlation tracking algorithm based on a spatial attention mechanism for low-resolution imaging systems (LSDCT) to address these challenges. The key innovations of our proposed algorithm include adjustable windows and a spatial attention mechanism. We design a generic adjustable window to mitigate boundary effects and employ the spatial attention mechanism to highlight the target in low-resolution images. We conduct qualitative and quantitative evaluations on three well-known benchmark datasets: OTB100, TC128, and UAV123. Extensive experimental results indicate that the proposed approach is superior to state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, W., Li, X., Bourahla, O.E., Huang, F., Wu, F., Liu, W., Wang, Z.: Progressive multistage learning for discriminative tracking. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3040799

  2. Abbass, M.Y., Kwom, K., Abdelwahab, S.A: A survey on online learning for visual tracking. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01848-y

  3. Walia, G.S., Ahuja, H., Kumar, A.: Unified graph-based multicue feature fusion for robust visual tracking. IEEE Tran. Cybern. 99, 1–12 (2019)

    Google Scholar 

  4. Wang, X., Fan, B., Chang, S.: Greedy batch-based minimum-cost flows for tracking multiple objects. IEEE Trans. Image Process. 26(10), 4765–4776 (2017)

    Article  MathSciNet  Google Scholar 

  5. Fang, Z., Cao, Z., Xiao, Y.: MAT: multianchor visual tracking with selective search region. IEEE Trans. Cybern. 99, 1–15 (2020)

    Google Scholar 

  6. Xu, D., Songyun, X., Ya, M., Liuzhi, Z., Zhao, X.: Brain computer integration controlled unmanned vehicle for target reconnaissance. In: IEEE International Conference on Unmanned Systems (2019)

  7. Buch, N., Velastin, S.A., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 12(3), 920–939 (2011)

    Article  Google Scholar 

  8. Lu, R., Yang, X., Jing, X., et al.: Infrared small target detection based on local hypergraph dissimilarity measure. IEEE Geosci. Remote Sens. Lett. 1, 1–5 (2020)

    Google Scholar 

  9. Xue, Y., Ju, Z., Xiang, K., Chen, J., Liu, H.: Multimodal human hand motion sensing and analysis—a review. IEEE Trans. Cogn. Dev. Syst. 11(2), 162–175 (2019)

    Article  Google Scholar 

  10. Lu, R., Yang, X., Jing, X., et al.: Robust infrared small target detection via multidirectional derivative-based weighted contrast measure. IEEE Geosci. Remote Sens. Lett. 1(1), 1–5 (2020)

    Google Scholar 

  11. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364 (2017)

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

  13. Wu, Y., Lim, J., Yang, M.-H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  14. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: European Conference on Computer Vision, Lecture Notes in Computer Science, pp. 445–461 (2016)

  16. Zhao, H., Zhang, Y., Liu, S., Shi, J.: PSANet: point-wise spatial attention network for scene parsing. In: European Conference on Computer Vision. Springer, Cham (2018)

  17. Tian, C., Xu, Y., Li, Z.: Attention-guided CNN for image denoising. Neural Netw. 124, 117–129 (2020)

    Article  Google Scholar 

  18. Chen, B., Li, P., Sun, C.: Multi attention module for visual tracking. Pattern Recogn. 87, 80–93 (2019)

    Article  Google Scholar 

  19. Zhang, J., Wu, Y., Feng, W.: Spatially attentive visual tracking using multi-model adaptive response fusion. IEEE Access 99, 1–1 (2019)

    Article  Google Scholar 

  20. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

  21. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015). https://doi.org/10.1109/tpami.2014.2345390

    Article  Google Scholar 

  22. Zhang, D., Zhang, Z., Zou, L., Xie, Z., He, F., Wu, Y., Tu, Z.: Part-based visual tracking with spatially regularized correlation filters. Vis. Comput. 36(3), 509–527 (2020)

    Article  Google Scholar 

  23. Abbass, M.Y., Kwon, K.-C., Kim, N., Abdelwahab, S.A., El-Samie, F.E.A., Khalaf, A.A.M.: Efficient object tracking using hierarchical convolutional features model and correlation filters. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01833-5

    Article  Google Scholar 

  24. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S. Staple: Complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)

  25. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (Eds.) European Conference on Computer Vision, vol. 8926. Lecture Notes in Computer Science, pp. 254–265 (2015)

  26. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  27. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)

  28. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6931–6939 (2017)

  29. Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.-H.: Learning spatial–temporal regularized correlation filters for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4904–4913 (2018)

  30. Dai, K., Wang, D., Lu, H., Sun, C., Li, J., Soc, I.C.: Visual tracking via adaptive spatially-regularized correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4665–4674 (2019)

  31. Li, Y., Fu, C., Ding, F., Huang, Z., Lu, G.: AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11920–11929 (2020)

  32. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 1144–1152 (2017)

  33. Lukezic, A., Vojir, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4847–4856 (2017)

  34. Ma, C., Huang, J.-B., Yang, X., Yang, M.-H.: Hierarchical convolutional features for visual tracking. In: IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)

  35. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.) European Conference on Computer Vision, Vol. 9909. Lecture Notes in Computer Science, pp. 472–488 (2016)

  36. Wang, N., Song, Y., Ma, C., Zhou, W., Liu, W., Li, H.: Unsupervised deep tracking. In: Long, B., IEEE Conference on Computer Vision and Pattern Recognition, CA, USA, pp. 1308–1317 (2019)

  37. Wang, N., Zhou, W., Song, Y., Ma, C., Li, H.: Real-time correlation tracking via joint model compression and transfer. IEEE Trans. Image Process. 29, 6123–6135 (2020). https://doi.org/10.1109/tip.2020.2989544

    Article  MathSciNet  Google Scholar 

  38. Gundogdu, E., Alatan, A.A.: Good features to correlate for visual tracking. IEEE Trans. Image Process. 27(5), 2526–2540 (2018)

    Article  MathSciNet  Google Scholar 

  39. Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R.W.H., Yang, M.-H.: CREST: Convolutional residual learning for visual tracking. In: IEEE International Conference on Computer Vision, pp. 2574–2583 (2017)

  40. Li, X., Ma, C., Wu, B., He, Z., Yang, M.-H., Soc, I.C.: Target-aware deep tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1369–1378 (2019)

  41. Qiang, W., Jin, G., Junliang, X., Mengdan, Z., Weiming, H.: Dcfnet: Discriminant Correlation Filters Network for Visual Tracking (2017). arXiv arXiv:1704.04057.

  42. Tian, S., Shen, S., Tian, G.: End-to-end deep metric network for visual tracking. Vis. Comput. 36(6), 1219–1232 (2020)

    Article  Google Scholar 

  43. Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free tracking. In:IEEE Conference on Computer Vision and Pattern Recognition, pp. 2113–2120 (2015)

  44. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (2014)

  45. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1387–1395 (2017)

  46. Bertinetto, B.L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jegou, H. (Eds.) European Conference on Computer Vision, Vol. 9914. Lecture Notes in Computer Science, pp. 850–865 (2016)

Download references

Funding

This research was funded by the Natural Science Foundation of China, Grant Number 61806209, and the Key Laboratory of Shaanxi Province Open Foundation, Grant Number SKLIIN-20180103.

Author information

Authors and Affiliations

Authors

Contributions

The work of methodology, software, validation, and original draft preparation was finished by Y.H.; The work of review and editing was finished by X.L., R.L., and X.Y.; the work of supervision and funding acquisition was finished by X.Y. and R.L.

Corresponding author

Correspondence to Yueping Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lu, R., Li, X. et al. Discriminative correlation tracking based on spatial attention mechanism for low-resolution imaging systems. Vis Comput 38, 1495–1508 (2022). https://doi.org/10.1007/s00371-021-02083-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02083-9

Keywords

Navigation