Skip to main content
Log in

Morphology evolution of SmCox permanent magnetic nanoparticles

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Sm-Co nanoparticles (NPs) are promising candidates for preparing superstable magnets and exchange-coupled nanocomposite magnets with unprecedented magnetic properties. However, the morphology evolution of the NPs remains unclear. Here, single crystalline SmCox (x = 4.07, 4.79, 6.94, and 8.61) NPs with dimensions below the critical size of a single magnetic domain were synthesized. These NPs consist of Sm2Co7, SmCo5, and Sm2Co17 phases with divergent typical morphologies. An evolution model for the different morphological characteristics was proposed based on phase-structure changes and surface-energy calculations using the density functional theory. The results show that these SmCo4.79 NPs can be well aligned along the easy magnetization axis and exhibit an ultrahigh coercivity of 5.7 T, thus enabling to advance the control of NP morphology and to facilitate their use in superstable or nanocomposite magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Campbell, Permanent Magnet Materials and Their Application (Cambridge University Press, Cambridge, 1996), p. 5.

    Google Scholar 

  2. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2010), p. 13.

    Google Scholar 

  3. J. M. D. Coey, J. Magn. Magn. Mater. 248, 441 (2002).

    Article  ADS  Google Scholar 

  4. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011).

    Article  Google Scholar 

  5. H. Zeng, and S. Sun, Adv. Funct. Mater. 18, 391 (2008).

    Article  Google Scholar 

  6. B. Balamurugan, D. J. Sellmyer, G. C. Hadjipanayis, and R. Skomski, Scripta Mater. 67, 542 (2012).

    Article  Google Scholar 

  7. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mater. 158, 118 (2018).

    Article  ADS  Google Scholar 

  8. W. Xia, Y. He, H. Huang, H. Wang, X. Shi, T. Zhang, J. Liu, P. Stamenov, L. Chen, J. M. D. Coey, and C. Jiang, Adv. Funct. Mater. 29, 1900690 (2019).

    Article  Google Scholar 

  9. K. H. J. Buschow, P. A. Naastepad, and F. F. Westendorp, J. Appl. Phys. 40, 4029 (1969).

    Article  ADS  Google Scholar 

  10. F. F. Westendorp, Solid State Commun. 8, 139 (1970).

    Article  ADS  Google Scholar 

  11. M. Duerrschnabel, M. Yi, K. Uestuener, M. Liesegang, M. Katter, H. J. Kleebe, B. Xu, O. Gutfleisch, and L. Molina-Luna, Nat. Commun. 8, 54 (2017).

    Article  ADS  Google Scholar 

  12. T. Zhang, H. Liu, J. Liu, and C. Jiang, Appl. Phys. Lett. 106, 162403 (2015).

    Article  ADS  Google Scholar 

  13. O. Akdogan, H. Sepehri-Amin, N. M. Dempsey, T. Ohkubo, K. Hono, O. Gutfleisch, T. Schrefl, and D. Givord, Adv. Electron. Mater. 1, 1500009 (2015).

    Article  Google Scholar 

  14. X. Xu, Y. Li, Z. Ma, M. Yue, and D. Zhang, Scripta Mater. 178, 34 (2020).

    Article  Google Scholar 

  15. M. Yue, X. Zhang, and J. P. Liu, Nanoscale 9, 3674 (2017).

    Article  Google Scholar 

  16. X. Li, L. Lou, W. Song, G. Huang, F. Hou, Q. Zhang, H. T. Zhang, J. Xiao, B. Wen, and X. Zhang, Adv. Mater. 29, 1606430 (2017).

    Article  Google Scholar 

  17. A. Yan, A. Bollero, O. Gutfleisch, and K. H. Müller, J. Appl. Phys. 91, 2192 (2002).

    Article  ADS  Google Scholar 

  18. Y. Dong, T. Zhang, Z. Xia, H. Wang, Z. Ma, X. Liu, W. Xia, J. M. D. Coey, and C. Jiang, Nanoscale 11, 16962 (2019).

    Article  Google Scholar 

  19. M. Yue, C. Li, Q. Wu, Z. Ma, H. Xu, and S. Palaka, Chem. Eng. J. 343, 1 (2018).

    Article  Google Scholar 

  20. B. Shen, C. Yu, D. Su, Z. Yin, J. Li, Z. Xi, and S. Sun, Nanoscale 10, 8735 (2018).

    Article  Google Scholar 

  21. B. Shen, C. Yu, A. A. Baker, S. K. McCall, Y. Yu, D. Su, Z. Yin, H. Liu, J. Li, and S. Sun, Angew. Chem. Int. Ed. 58, 602 (2019).

    Article  Google Scholar 

  22. Z. Ma, M. Yue, Q. Wu, C. Li, and Y. Yu, Nanoscale 10, 10377 (2018).

    Article  Google Scholar 

  23. C. Li, Q. Wu, Z. Ma, H. Xu, L. Cong, and M. Yue, J. Mater. Chem. C 6, 8522 (2018).

    Article  Google Scholar 

  24. Z. Ma, S. Yang, T. Zhang, and C. Jiang, Chem. Eng. J. 304, 993 (2016).

    Article  Google Scholar 

  25. Z. Ma, T. Zhang, and C. Jiang, Chem. Eng. J. 264, 610 (2015).

    Article  Google Scholar 

  26. Z. Ma, T. Zhang, and C. Jiang, RSC Adv. 5, 89128 (2015).

    Article  ADS  Google Scholar 

  27. C. Yang, L. Jia, S. Wang, C. Gao, D. Shi, Y. Hou, and S. Gao, Sci. Rep. 3, 03542 (2013).

    Article  ADS  Google Scholar 

  28. Z. Ma, M. Yue, H. Liu, Z. Yin, K. Wei, H. Guan, H. Lin, M. Shen, S. An, Q. Wu, and S. Sun, J. Am. Chem. Soc. 142, 8440 (2020).

    Article  Google Scholar 

  29. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  30. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  31. G. Kresse, and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  32. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  33. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  35. H. Feng, H. Chen, Z. Guo, R. Yu, and W. Li, Intermetallics 18, 1067 (2010).

    Article  Google Scholar 

  36. X. Song, T. Ma, X. Zhou, F. Ye, T. Yuan, J. Wang, M. Yue, F. Liu, and X. Ren, Acta Mater. 202, 290 (2020).

    Article  ADS  Google Scholar 

  37. L. Wang, J. X. Shang, F. H. Wang, Y. Zhang, and A. Chroneos, J. Phys.-Condens. Matter 23, 265009 (2011).

    Article  ADS  Google Scholar 

  38. Z. Ma, H. Tian, L. Cong, Q. Wu, M. Yue, and S. Sun, Angew. Chem.-Int. Edit. 58, 14509 (2019).

    Article  Google Scholar 

  39. K. H. J. Buschow, J. Less Common Met. 33, 311 (1973).

    Article  Google Scholar 

  40. K. H. J. Buschow, Rep. Prog. Phys. 40, 1179 (2001).

    Article  ADS  Google Scholar 

  41. Y. Zhang, W. Li, C. Xie, and X. Zhang, J. Supercond. Nov. Magn. 29, 2345 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengBao Jiang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52031001, and 91960101).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wang, H., Liu, B. et al. Morphology evolution of SmCox permanent magnetic nanoparticles. Sci. China Phys. Mech. Astron. 64, 247511 (2021). https://doi.org/10.1007/s11433-020-1657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1657-7

Keywords

Navigation