Skip to main content
Log in

Desulfurization Behavior of Fe-18Cr-18Mn Alloy during the Pressurized Electroslag Remelting with Different Atmospheres and Na2O-containing Slags

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Pressurized electroslag remelting (PESR) has been widely used for preparation of high-quality high nitrogen steels. However, desulfurization might be limited by the pressurized-nitrogen atmosphere in the process. In this paper, the desulfurization behaviors of electroslag remelting in air and nitrogen pressure were investigated and further an appropriate method to improve the sulfur removal in PESR was explored. The results show that the ESR in air maintained relatively high and stable desulfurization ability, but the PESR provided worse sulfur removal owing to the lack of sulfur gasifying oxidation under N2 pressure. With the decline of sulfur distribution coefficient (LS) and the enrichment of sulfur in slag during the remelting, the desulfurization in PESR was gradually weakened. The level of gas pressure had little effect on sulfur removal. The Na2O addition in conventional CaO-Al2O3-CaF2 slags significantly increased the activity of desulfurizers and LS, and slightly improved sulfur mass transfer in slags, then alleviated the negative effect brought by the reduction of desulfurization ability in PESR and achieved higher desulfurization degree. In addition, desulfurization in the remelting was mainly achieved at the liquid metal film of electrode tips, which was benefited from the great reaction specific surface area and high initial sulfur content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. 1. G. Stein, and J. Menzel: Int. J. Mater. Prod. Tec., 1995, vol. 10, pp. 478–88.

    CAS  Google Scholar 

  2. 2. J. Yu, F.B. Liu, H.B. Li, Z.H. Jiang, Y. Li, C.P. Kang, A. Wang, W.C. Zhang, and H. Feng: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3112–24.

    Google Scholar 

  3. 3. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, W.C. Jiao, S.C. Zhang, P.B. Wang, and J.H. Zhu: ISIJ Int., 2018, vol. 58, pp. 1267–74.

    CAS  Google Scholar 

  4. 4. Z.H. Jiang, H.C. Zhu, H.B. Li, G.H. Liu, P.B. Wang, J.H. Zhu, S.C. Zhang, and H. Feng: ISIJ Int., 2018, vol. 58, pp. 107–13.

    CAS  Google Scholar 

  5. 5. T. Mattar, K. El Fawakhry, H. Halfa, and M. El Demerdash: Metall. Mater. Trans. B, 2006, vol. 36B, pp. 987–95.

    Google Scholar 

  6. 6. J. Yu, F.B. Liu, Z.H. Jiang, H.B. Li, C.P. Kang, W.C. Zhang, A. Wang, and X. Geng: ISIJ Int., 2020, vol. 60, pp. 1684–92.

    CAS  Google Scholar 

  7. 7. H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, M.H. Cai, H.C. Zhu, and Z.G. Chen: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4987–99.

    Google Scholar 

  8. 8. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng: Int. J. Miner. Metall. Mater., 2020, https://doi.org/10.1007/s12613-020-2075-3.

    Article  Google Scholar 

  9. 9. Y. Liu, Z. Zhang, G.Q. Li, Q. Wang, L. Wang, and B.K. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.

    Google Scholar 

  10. 10. K. Narita, T. Onoye, T. Ishii, and T. Kusamichi: Tetsu-to-Hagané, 1978, vol. 64, pp. 1568–77 (in Japanese).

    CAS  Google Scholar 

  11. 11. M. Kato, K. Hasegawa, S. Nomura, and M. Inouye: Trans. ISIJ, 1983, vol. 23, pp. 618–27.

    CAS  Google Scholar 

  12. 12. R.S.E. Schneider, M. Molnar, S. Gelder, G. Reiter, and C. Martinez: Steel Res. Int., 2018, vol. 89, pp. 1800161.

    Google Scholar 

  13. T. Mattar, Kamal EI-Fawakhry, H. Haifa, and M. Eissa: Steel Res. Int., 2008, vol. 79, pp. 691–97.

  14. M. Eissa, and A. EI-Mohammadi: Steel Res., 1998, vol. 69, pp. 413–17.

  15. 15. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    CAS  Google Scholar 

  16. 16. L.Z. Chang, X.F. Shi, and J.Q. Cong: Ironmak. Steelmak., 2014, vol. 41, pp. 182–86.

    CAS  Google Scholar 

  17. 17. X.C. Chen, C.B. Shi, F. Wang, H. Ren, and H.J. Guo: J. Mater. Metall., 2013, vol. 12, pp. 27–32 (in Chinese).

    CAS  Google Scholar 

  18. 18. S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, and J. Guo: Metall. Mater. Trans. B, 2019, vol. 51B, pp. 353–64.

    Google Scholar 

  19. 19. K. Mineura, I. Takahashi, and K. Tanaka: ISIJ Int., 1990, vol. 30, pp. 192–98.

    CAS  Google Scholar 

  20. 20. C.B. Shi, W.T. Yu, H. Wang, J. Li, and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 48B, pp. 146–61.

    Google Scholar 

  21. 21. E. Moosavi-Khoonsari, and I.H. Jung: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2875–88.

    Google Scholar 

  22. 22. Y.H. Gao, Q.C. Liu, and L.T. Bian: Metall. Mater. Trans. B, 2011, vol. 43B, pp. 229–32.

    Google Scholar 

  23. 23. M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.

    CAS  Google Scholar 

  24. 24. A. Hernandez, A. Romero, F. Chavez, M. Angeles, and R.D. Morales: ISIJ Int., 1998, vol. 38, pp. 126–31.

    CAS  Google Scholar 

  25. 25. W.H.V. Niekerk, and R.J. Dippenaar: ISIJ Int., 1993, vol. 33, pp. 59–65.

    Google Scholar 

  26. 26. J.Y. Choi, D.J. Kim, and H.G. Lee: ISIJ Int., 2001, vol. 41, pp. 216–24.

    CAS  Google Scholar 

  27. 27. Q. Stein, I. Huchlenbroich, and M. Wagner: Mater. Sci. Forum, 1999, vol. 318-320, pp. 167–74.

    Google Scholar 

  28. 28. T. Rashev: Mater. Manuf. Process., 2004, vol. 19, pp. 31–40.

    CAS  Google Scholar 

  29. 29. S.C. Liu, T. Hashida, H. Takahashi, H. Kuwano, and Y. Hamaguchi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 791–98.

    CAS  Google Scholar 

  30. 30. Q. Stein, and I. Huchlenbroich: Mater. Manuf. Process., 2006, vol. 19, pp. 7–17.

    Google Scholar 

  31. 31. P. Saravanan, and V.S. Raja: Int. J. Mater. Chem. Phys., 2015, vol. 1, pp. 141–45.

    Google Scholar 

  32. 32. P. Saravanan, and V.S. Raja: Int. J. Mater. Chem. Phys., 2015, vol. 1, pp. 212–19.

    Google Scholar 

  33. 33. D.E. Williams, M.R. Kilburn, J. Cliff, and G.I. Waterhouse: Corros. Sci., 2010, vol. 52, pp. 3702–16.

    CAS  Google Scholar 

  34. 34. P. Roffey, and E.H. Davies: Eng. Fail. Anal., 2014, vol. 44, pp. 148–57.

    CAS  Google Scholar 

  35. 35. A. Matsui, Y. Uchida, N. Kikuchi, and Y. Miki: ISIJ Int., 2017, vol. 57, pp. 1012–18.

    CAS  Google Scholar 

  36. 36. S.H. Lee, and D.J. Min: Materials, 2020, vol. 13, pp. 2478.

    CAS  Google Scholar 

  37. 37. J.H. Wei, and A. Mitchell: Acta Metall. Sin., 1984, vol. 5, pp. 261–79 (in Chinese).

    Google Scholar 

  38. 38. D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–97.

    Google Scholar 

  39. 39. D. Hou, D.Y. Wang, T.P. Qu, J. Tian, and H.H. Wang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3088–102.

    Google Scholar 

  40. 40. Q. Wang, Y. Liu, F. Wang, G.Q. Li, B.K. Li, and W.W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2649–63.

    Google Scholar 

  41. 41. K.H. Zhang, Y.L. Zhang, and T. Wu: J. Iron Steel Res. Int., 2019, vol. 26, pp. 1041–51.

    CAS  Google Scholar 

  42. 42. H. Iwai, and K. Kunisada: ISIJ Int., 1989, vol. 29, pp. 135–39.

    CAS  Google Scholar 

  43. 43. K.H. Zhang, Y.L. Zhang, F.S. Li, and T. Wu: J. Iron Steel Res., 2018, vol. 4, pp. 265–72 (in Chinese).

    Google Scholar 

  44. 44. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.

    Google Scholar 

  45. 45. J.Y. Li, and G.G. Cheng: ISIJ Int., 2019, vol. 59, pp. 2013–23.

    CAS  Google Scholar 

  46. 46. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, pp. 1362–72.

    CAS  Google Scholar 

  47. 47. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1150–80.

    Google Scholar 

  48. 48. W.M. Li, Y.L. Sun, S.P. Wu, and X.M. Zang: High Temp. Mat. PR-ISR, 2020, vol. 39, pp. 405–16.

    CAS  Google Scholar 

  49. 49. C.B. Shi, D.L. Zheng, B.S. Guo, J. Li, and F. Jiang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3390–3402.

    Google Scholar 

  50. 50. C.B. Shi: ISIJ Int., 2020, https://doi.org/10.2355/isijinternational.ISIJINT-2019-661.

    Article  Google Scholar 

  51. 51. Z.H. Jiang, G. Xu, Y. Li, H.B. Li, J.B. Lv, and Q. Wang: ISIJ Int., 2018, vol. 59, pp. 1234–41.

    Google Scholar 

  52. 52. H. Wang, J. Li, C.B. Shi, Y.F. Qi, and Y.X. Dai: ISIJ Int., 2019, vol. 59, pp. 828–38.

    CAS  Google Scholar 

  53. 53. T.S. Zhang, D.Y. Wang, C.W. Liu, M.F. Jiang, M. Lu, B. Wang, and S.X. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 99–103.

    CAS  Google Scholar 

  54. 54. M.A. Swetnam, R.V. Kumar, and D.J. Fray: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 381–88.

    CAS  Google Scholar 

  55. 55. Y.N. Wang, J. Yang, and Y.P. Bao: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2669–78.

    Google Scholar 

  56. 56. J.M. Su, Z.H. Dou, T.A. Zhang, and Y. Liu: J. Iron Steel Res. Int., 2020, vol. 27, pp. 392–401.

    CAS  Google Scholar 

  57. 57. X.M. Li, M. Lv, W.D. Yin, J.X. Zhao, and Y.R. Cui: J. Iron Steel Res. Int., 2018, vol. 26, pp. 519–28.

    Google Scholar 

  58. 58. K.H. Zhang, Y.L. Zhang, and T. Wu: Metals, 2018, vol. 8, pp. 1068.

    CAS  Google Scholar 

  59. 59. J.J. Pak, K. Ito, and F.J. Fruehan: ISIJ Int., 1989, vol. 29, pp. 318–23.

    CAS  Google Scholar 

  60. 60. R. Inoue, and H. Suito: Trans. ISIJ, 1982, vol. 22, pp. 514–23.

    CAS  Google Scholar 

  61. 61. Z.F. Tong, J.L. Qiao, and X.Y. Jiang: ISIJ Int., 2017, vol. 57, pp. 245–53.

    CAS  Google Scholar 

  62. 62. M. Li, T. Utigard, and M. Barati: Metall. Mater. Trans. B, 2014, vol. 46B, pp. 74–82.

    Google Scholar 

  63. 63. H. van Limpt, R. Beerkens, and O. Verheijen: J. Am. Ceram. Soc., 2006, vol. 89, pp. 3446–55.

    Google Scholar 

  64. 64. J.J. Pak, and R.J. Fruehan: Metall. Trans. B, 1991, vol. 22B, pp. 39–46.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/51774074/52004060], China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076], China Postdoctoral Science Foundation [Grant No. 2020M670775], Talent Project of Revitalizing Liaoning [Grant No. XLYC1902046], Shanxi Municipal Major Science & Technology Project [Grant No. 20181101014], and Transformation Project of Scientific and Technological Achievements in Jiangsu Province (Grant No. BA2017135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 24, 2020; accepted January 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Li, HB., Feng, H. et al. Desulfurization Behavior of Fe-18Cr-18Mn Alloy during the Pressurized Electroslag Remelting with Different Atmospheres and Na2O-containing Slags. Metall Mater Trans B 52, 1294–1308 (2021). https://doi.org/10.1007/s11663-021-02092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02092-y

Navigation