Skip to main content

Advertisement

Log in

Selective Laser Melting of Maraging Steels Using Recycled Powders: A Comprehensive Microstructural and Mechanical Investigation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is an additive manufacturing (AM) technique designed to use a high energy density laser to fuse metallic powders for producing three-dimensional parts. So far, most studies of SLM have been focused on using virgin metal powders. There are few comprehensive studies on the microstructure and mechanical properties of SLM-produced parts using recycled powders, especially for maraging steels. In this study, we employ recycled steel powder (reused after 113 building cycles) in the SLM process to print multiple shaped components and systematically characterize the microstructure and mechanical properties (indentation, tensile, and Charpy testing). Our results show that maraging steel produced with recycled powder exhibit the nearly identical microstructure and mechanical properties (940 MPa yield strength, 1127 MPa ultimate tensile strength, 11 pct elongation, and 47.5 J room temperature impact fracture energy) to those produced using virgin powders. This study provides a useful generic guide towards using recycled metal powders in the SLM processing, promoting an economic solution to industrial productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. I. Galindo-Nava, W. M. Rainforth and P. E. J. Rivera-Díaz-del-Castillo: Acta Mater., 2016, vol. 117, pp. 270-85.

    Article  CAS  Google Scholar 

  2. S. J. Midea: Heat Treat. Incl. Steel Heat Treat. New Millennium (ASM International, New York, 2000).

  3. M. K. El-Fawkhry, M. Eissa, A. Fathy and T. Mattar: Mater. Today: Proc., 2015, vol. 2, pp. S711-S14.

    Article  Google Scholar 

  4. P. R. Sakai, M. S. F. Lima, L. Fanton, C. V. Gomes, S. Lombardo, D. F. Silva and A. J. Abdalla: Procedia Eng., 2015, vol. 114, pp. 291-97.

    Article  CAS  Google Scholar 

  5. T. Bhardwaj and M. Shukla: Mater. Today: Proc., 2019, vol. 18, pp. 3842-48.

    Article  CAS  Google Scholar 

  6. C.-C. Kuo and Z.-F. Jiang: Int. J. Adv. Manuf. Technol., 2019, vol. 104, pp. 4169-81.

    Article  Google Scholar 

  7. A. Fortunato, A. Lulaj, S. Melkote, E. Liverani, A. Ascari and D. Umbrello: Int. J. Adv. Manuf. Technol., 2017, vol. 94, pp. 1895-902.

    Article  Google Scholar 

  8. W. E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917-28.

    Article  CAS  Google Scholar 

  9. C. Emmelmann, J. Kranz, D. Herzog and E. Wycisk: Laser Technol. Biomim.: Basics App., 2013, pp 143-62.

  10. H. Asgari, C. Baxter, K. Hosseinkhani and M. Mohammadi: J. Mater. Sci. Eng. A, 2017, vol. 707, pp. 148-58.

    Article  CAS  Google Scholar 

  11. M. Baumers, P. Dickens, C. Tuck and R. Hague: Technol. Forecast. Soc. Change, 2016, vol. 102, pp. 193-201.

    Article  Google Scholar 

  12. L. Cordova, M. Campos and T. Tinga: JOM, 2019, vol. 71, pp. 1062-72.

    Article  Google Scholar 

  13. L. C. Ardila, F. Garciandia, J. B. González-Díaz, P. Álvarez, A. Echeverria, M. M. Petite, R. Deffley and J. Ochoa: Phys. Procedia, 2014, vol. 56, pp. 99-107.

    Article  Google Scholar 

  14. S. Dehgahi, M. H. Ghoncheh, A. Hadadzadeh, M. Sanjari, B. S. Amirkhiz and M. Mohammadi: Mater. Des., 2020, vol. 194, art. no. 108965.

    Article  CAS  Google Scholar 

  15. J. A. Slotwinski, E. J. Garboczi, P. E. Stutzman, C. F. Ferraris, S. S. Watson and M. A. Peltz: J Res Natl Inst Stand Technol, 2014, vol. 119, pp. 460-93.

    Article  CAS  Google Scholar 

  16. A. Strondl, O. Lyckfeldt, H. Brodin and U. Ackelid: JOM, 2015, vol. 67, pp. 549-54.

    Article  CAS  Google Scholar 

  17. P. Quinn, S. O’Halloran, J. Lawlor and R. Raghavendra: Adv. Mater. Process. Technol., 2019, vol. 5, pp. 348-59.

    Google Scholar 

  18. Y. Sun, M. Aindow and R. J. Hebert: Mater. High Temp., 2017, vol. 35, pp. 217-24.

    Article  Google Scholar 

  19. V. V. Popov, A. Katz-Demyanetz, A. Garkun and M. Bamberger: Addit. Manuf., 2018, vol. 22, pp. 834-43.

    CAS  Google Scholar 

  20. A. H. Maamoun, M. Elbestawi, G. K. Dosbaeva and S. C. Veldhuis: Addit. Manuf., 2018, vol. 21, pp. 234-47.

    CAS  Google Scholar 

  21. A. Saboori, A. Aversa, F. Bosio, E. Bassini, E. Librera, M. De Chirico, S. Biamino, D. Ugues, P. Fino and M. Lombardi: J. Mater. Sci. Eng. A, 2019, vol. 766, art. no. 138360.

    Article  CAS  Google Scholar 

  22. P. E. Carrion, A. Soltani-Tehrani, N. Phan and N. Shamsaei: JOM, 2018, vol. 71, pp. 963-73.

    Article  Google Scholar 

  23. J. Suryawanshi, K. G. Prashanth and U. Ramamurty: J. Alloys Compd., 2017, vol. 725, pp. 355-64.

    Article  CAS  Google Scholar 

  24. K. Kempen, E. Yasa, L. Thijs, J. P. Kruth and J. Van Humbeeck: Phys. Procedia (2011) , vol. 12, pp. 255-63.

    Article  CAS  Google Scholar 

  25. National Research Council: Accelerated Aging of Materials and Structures: The Effects of Long-Term Elevated-Temperature Exposure, The National Academies Press, Washington, DC, 1996, pp. 7-10.

    Google Scholar 

  26. A. N. D. Gasper, B. Szost, X. Wang, D. Johns, S. Sharma, A. T. Clare and I. A. Ashcroft: Addit. Manuf., 2018, vol. 24, pp. 446-56.

    CAS  Google Scholar 

  27. S. D. Meshram, G. M. Reddy and S. Pandey: Mater. Des., 2013, vol. 49, pp. 58-64.

    Article  CAS  Google Scholar 

  28. E. A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit and D. Raabe: Mater., 2017, vol. 10, art. no. 8.

    Article  Google Scholar 

  29. E. A. Jägle, P. Choi, J. Van Humbeeck and D. Raabe: J. Mater. Res., 2014, vol. 29, pp. 2072-79.

    Article  Google Scholar 

  30. C. Tan, K. Zhou, M. Kuang, W. Ma and T. Kuang: Sci. Technol. Adv. Mater., 2018, vol. 19, pp. 746-58.

    Article  CAS  Google Scholar 

  31. J. Zhang, B. Song, Q. Wei, D. Bourell and Y. Shi: J. Mater. Sci. Technol., 2019, vol. 35, pp. 270-84.

    Article  Google Scholar 

  32. P. Kürnsteiner, M. B. Wilms, A. Weisheit, P. Barriobero-Vila, E. A. Jägle and D. Raabe: Acta Mater., 2017, vol. 129, pp. 52-60.

    Article  Google Scholar 

  33. L. Kučerová, I. Zetková, A. Jandová and M. Bystrianský: J. Mater. Sci. Eng. A, 2019, vol. 750, pp. 70-80.

    Article  Google Scholar 

  34. J. Mutua, S. Nakata, T. Onda and Z.-C. Chen: Mater. Des., 2018, vol. 139, pp. 486-97.

    Article  CAS  Google Scholar 

  35. R. Casati, J. Lemke, A. Tuissi and M. Vedani: J. Met., 2016, vol. 6, art. no. 218.

    Google Scholar 

  36. M.-Y. Seok, I.-C. Choi, J. Moon, S. Kim, U. Ramamurty and J.-i. Jang: Scr. Mater., 2014, vol. 87, pp. 49-52.

    Article  CAS  Google Scholar 

  37. B. Mooney and K. Kourousis: J. Met., 2020, vol. 10, art. no. 1273.

    CAS  Google Scholar 

  38. C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu and T. Kuang: Mater. Des., 2017, vol. 134, pp. 23-34.

    Article  CAS  Google Scholar 

  39. T. Hermann Becker and D. Dimitrov: Rapid Prototyp. J., 2016, vol. 22, pp. 487-94.

    Article  Google Scholar 

  40. L. Mugwagwa, I. Yadroitsev, and S. Matope: J. Met., 2019, vol. 9, art. no. 1042.

    CAS  Google Scholar 

  41. B. Zhang, S. Liu and Y. C. Shin: Addit. Manuf., 2019, vol. 28, pp. 497-505.

    CAS  Google Scholar 

  42. M. Hasegawa: Treatise Process Metall., 2014, vol. 1, pp 507-16.

    Article  CAS  Google Scholar 

  43. B. Liu, B.-Q. Li and Z. Li: Results Phys., 2019, vol. 12, pp. 982-88.

    Article  Google Scholar 

  44. S. Lu, H. Fujii and K. Nogi: J. Mater. Sci. Eng. A, 2004, vol. 380, pp. 290-97.

    Article  Google Scholar 

  45. K. C. Mills, B. J. Keene, R. F. Brooks, A. Shirali: Philos. Trans. R. Soc. A, 1998, vol. 356, pp. 911-25.

    Article  CAS  Google Scholar 

  46. L. Thijis, J. V. Humbeeck, K. Kempen, E. Yasa, J. P. Kruth and M. Rombouts: Innovative Dev. in Virtual Phys. Prototyping, ed. P. J. Bartolo (CRC Press: Portugal, 2011), pp. 297–304.

  47. M. Masoumi, I. F. de Barros, L. F. G. Herculano, H. L. F. Coelho and H. F. G. de Abreu: Mater. Charact., 2016, vol. 120, pp. 203-09.

    Article  CAS  Google Scholar 

  48. A. Gupta, S. Goyal, K. A. Padmanabhan and A. K. Singh: Int. J. Adv. Manuf. Technol., 2014, vol. 77, pp. 565-72.

    Article  Google Scholar 

  49. S. K. Dhua, A. Ray, S. K. Sen, M. S. Prasad, M. K. B and S. Jha: J. Mater. Eng. Perform., 2000, vol. 9, pp. 700-09.

  50. Y. Murakami: JSME Int. J., 1989, vol. 32, pp. 167-80.

    CAS  Google Scholar 

  51. Y. Murakami and H. Usuki: Int. J. Fatigue, 1989, vol. 11, pp. 299-307.

    Article  CAS  Google Scholar 

  52. E. Sadeghi, P. Karimi, N. Israelsson, J. Shipley, T. Mansson and T. Hansson: Addit. Manuf., 2020, vol. 36, art. no. 101670.

    CAS  Google Scholar 

  53. A. Soltani-Tehrani, J. Pegues and N. Shamsaei: Addit. Manuf., vol. 36, 2020, art. no. 101398.

    CAS  Google Scholar 

  54. P. E. Carrion, A. Soltani-Tehrani, N. Phan and N. Shamsaei: JOM, vol.71, 2019, pp. 963–73.

    Article  CAS  Google Scholar 

  55. A. T. Sutton, C. S. Kriewall, S. Karnati, M. C. Leu and J. W. Newkirk: Addit. Manuf., 2020, vol. 32, art. no. 100981.

    CAS  Google Scholar 

  56. N. E. Gorji, R. O’Connor, A. Mussatto, M. Snelgrove, P. G. M. González and D. Brabazon: Materialia, 2019, vol. 8, art. no. 100489.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support from the Holistic Innovation in Additive Manufacturing Network (Hi-AM), Natural Sciences and Engineering Research Council of Canada (NSERC-RGPIN-2018-05731), and Dean’s Spark Assistant Professorship and XSeed Fund in the Faculty of Applied Science & Engineering at the University of Toronto. The authors thank Dr. A.T. Lausic, Mr. W. Byleveld, and Dr. K. Samk (EXCO Engineering) for their help with the experimental specimens, Dr. L. Wang (Shanghai Jiao Tong University) for his help with the XRD analysis, and Dr. Y. Liu (McGill University) for his assistance in Charpy impact tests. Mr. H. Sun acknowledges the Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 4, 2020; accepted February 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chu, X., Liu, Z. et al. Selective Laser Melting of Maraging Steels Using Recycled Powders: A Comprehensive Microstructural and Mechanical Investigation. Metall Mater Trans A 52, 1714–1722 (2021). https://doi.org/10.1007/s11661-021-06180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06180-1

Navigation