Skip to main content
Log in

Fracture of Structured Rocks and Materials in Nonuniform Stress Fields

  • ROCK FAILURE
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article reports the experimental data on brittle rock strength from the bending tests of beams and from diametrical fracture of disk specimens with an axial hole. The author uses the nonlocal fracture approach and compares the strength from the tests with the tensile strength of rocks. It is shown that the different geometry fracture tests allow determining the structural parameter of a medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Neiber, G., Kontsentratsiya napryazhenii(Stress Concentration), Moscow: Gostekhizdat, 1947.

  2. Novozhilov, V.V., About the Necessary and Sufficient Criterion of Brittle Strength, PMM, 1969, vol. 33, no. 2, pp. 212–222.

  3. Lajtai, E.Z., Effect of Tensile Stress Gradient on Brittle Fracture Initiation, J. Rock Mech. and Min. Sci., 1972, vol. 9, pp. 569–578.

  4. Waddoups, M.E., Eisenmann, J.R., and Kaminski, B.E., Macroscopic Fracture Mechanics of Advanced Composite Materials, J. Compos. Mater., 1971, vol. 5, no. 4, pp. 446–454.

  5. Seweryn, A. and Mroz, Z., A Nonlocal Stress Failure Condition for Structural Elements under Multiaxial Loading, J. Eng. Fracture Mech., 1995, vol. 51, no. 6, pp. 955–973.

  6. Carter, B.J., Size and Stress Gradient Effects on Fracture around Cavities, J. Rock Mech. and Rock Eng., 1992, vol. 25, no. 3, pp. 167–186.

  7. Kornev, V.M., Generalized Sufficient Strength Criteria. Description of the Pre-Fracture Zone, J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 5, pp. 763–769.

  8. Lecampion, B., Modeling Size Effects Associated with Tensile Fracture Initiation from a Wellbore, J. Rock Mech. and Min. Sci., 2012, vol. 56, pp. 67–76.

  9. Kurguzov, V.D. and Kornev, V.M., Construction of Quasi-Brittle and Quasi-Ductile Fracture Diagrams Based on Necessary and Sufficient Criteria, J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 1, pp. 156–169.

  10. Taylor, D., The Theory of Critical Distances Applied to Multiscale Toughening Mechanisms, J. Eng. Fract. Mech., 2019, vol. 209, pp. 392–403.

  11. Сarter, B.J., Laita, E.Z., and Yuan, Y., Tensile Fracture from Circular Cavities Loaded in Compression, J. Fract., 1992, vol. 57, no. 3, pp. 221–236.

  12. Mikhailov, S.E., A Functional Approach to Non-Local Strength Condition and Fracture Criteria, J. Eng. Fract. Mech., 1995, vol. 52, no. 4, pp. 731–754.

  13. Isupov, L.P. and Mikhailo, S.E., A Comparative Analysis of Several Nonlocal Fracture Criteria, J. Arch. Appl. Mech., 1998, vol. 68, no. 9, pp. 597–612.

  14. Trapezdnikov, L.P., Temperaturnaya treshchinostoikost' massivnykh betonnykh konstruktsii (Temperature Fracture Toughness of Massive Concrete Structures), Moscow: Energoatomizdat, 1986.

  15. Xia, S., Takezono, S., and Tao, K., A Nonlocal Damage Approach to Analysis of the Fracture Process Zone, J. Eng. Fract. Mech., 1994, vol. 48, no. 1, pp. 41–51.

  16. Afanasyev, N.N., Statisticheskaya teoriya ustalostnoi prochnosti metallov (Statistical Theory of Fatigue Strength of Metals), Kiev: AN USSR, 1953.

  17. Novopashin, M.D., Suknev, S.V., and Ivanov, А.М.,Uprugoplasticheskoe deformirovanie i predel'noe sostoyanie elementov konstruktsii (Elastoplastic Deformation and Limiting State of Structural Elements), Novosibirsk: Nauka, 1995.

  18. Kharlab, V.D. and Minin, V.А., Kriterii prochnosti, uchityvayushchii vliyanie gradienta napryazhennogo sostoyaniya. Issledovaniya po mekhanike stroitel'nykh konstruktsii i materialov (Strength Criterion Taking into Account the Influence of Stress Gradient. Investigation of the Mechanics of Building Structures and Materials), Leningrad: Leningrad Institute of Civil Engineering, 1989.

  19. Legan, М.А., Determination of the Breaking Load and the Position and Direction of a Fracture Using the Gradient Approach,J. Appl. Mech. Tech. Phys., 1994, vol. 35, no. 5, pp. 750–756.

  20. Whitney, J.M. and Nuismer, R.J., Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations, J. Compos. Mater., 1974, vol. 8, no. 4, pp. 253–265.

  21. Efimov, V.P., Tensile Strength of Rocks by Test Data on Disc-Shaped Specimens With a Hole Drilled through the Disc Center, J. Min. Sci., 2016, vol. 52, no. 5, pp. 878–884.

  22. Yao, W., Xia, K., and Li, X., Non-Local Failure Theory and Two-Parameter Tensile Strength Model for Semi-Circular Bending Tests of Granitic Rocks,J. Rock Mech. and Min. Sci., 2018, vol. 110, pp. 9–18.

  23. Ewing, P.D. and Williams, J.G., The Fracture of Spherical Shells under Pressure and Circular Tubes with Angled Cracks in Torsion, J. Fract., 1974, vol. 10, no. 4, pp. 537–544.

  24. Maiti, S.K. and Smith, R.A., Comparison of the Criteria for Mixed Mode Brittle Fracture Based on the Preinstability Stress-Strain Field. Part 1: Slit and Elliptical Cracks under Uniaxiale Tensile Loading, J. Fract., 1983, vol. 23, no. 4, pp. 281–295.

  25. Sapora, A., Torabi, A.R., Etesam, S., and Cornetti, P., Finite Fracture Mechanics Crack Initiation from a Circular Hole,J. Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, no. 7, pp. 1627–1636.

  26. Suknev, S.V., Experimental Substantiation of Nonlocal Failure Criteria for Geomaterial Plates with a Circular Hole under Nonequicomponent Compression, J. Min. Sci., 2015, vol. 51, no. 3, pp. 435–441.

  27. Efimov, V.P., Determination of Tensile Strength by the Measured Rock Bending Strength, J. Min. Sci., 2011, vol. 47, no. 5, pp. 580–586.

  28. Efimov, V.P., Integral Criterion for Determination of Tensile Strength and Fracture Toughness of Rocks, J. Min. Sci., 2019, vol. 55, no. 3, pp. 383–390.

  29. Efimov, V.P., Rock Tests in Nonuniform Fields of Tensile Stresses, J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 5, pp. 857–865.

  30. Timoshenko, S.P., Soprotivlenie materialov. Tom 2 (Strength of Materials. Vol. II), Moscow: Nauka, 1965.

  31. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Mechanics of Brittle Failure), Moscow: Nauka, 1974.

Download references

Funding

This study was supported by the Foundation for Basic Research, project no. AAAA-A17-117122090002-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Efimov.

Additional information

Russian Text ©The Author(s), 2020, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 4, pp. 29-36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, V.P. Fracture of Structured Rocks and Materials in Nonuniform Stress Fields. J Min Sci 56, 529–535 (2020). https://doi.org/10.1134/S1062739120046824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120046824

Keywords

Navigation