Skip to main content
Log in

Extended Time-Dependent Ginzburg–Landau Theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We formulate the gauge invariant Lorentz covariant Ginzburg–Landau theory which describes nonstationary regimes: relaxation of a superconducting system accompanied by eigen oscillations of internal degrees of freedom (Higgs mode and Goldstone mode) and also forced oscillations under the action of an external gauge field. The theory describes Lorentz covariant electrodynamics of superconductors where Anderson–Higgs mechanism occurs, at the same time the dynamics of conduction electrons remains non-relativistic. It is demonstrated that Goldstone oscillations cannot be accompanied by oscillations of charge density and they generate the transverse field only. In addition, we consider Goldstone modes and features of Anderson–Higgs mechanism in two-band superconductors. We study dissipative processes, which are caused by movement of the normal component of electron liquid and violate the Lorentz covariance, on the examples of the damped oscillations of the order parameter and the skin-effect for electromagnetic waves. An experimental consequence of the extended time-dependent Ginzburg–Landau theory regarding the penetration of the electromagnetic field into a superconductor is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, Oxford, 2005)

    Book  Google Scholar 

  2. N. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford Univ Press, Oxford, 2001)

    Book  Google Scholar 

  3. L.P. Gor’kov, G.M. Eliashberg, Soviet Phys. JETP 27, 328 (1968)

    ADS  Google Scholar 

  4. R.J. Watts-Tobin, Y. Krähenbühl, L. Kramer, J. Low Temp. Phys. 42, 459 (1981). https://doi.org/10.1007/BF00117427

    Article  ADS  Google Scholar 

  5. M. Tinkham, Introduction to Superconductivity (McGRAW-HILL Book Company, New York, 1975)

    Google Scholar 

  6. T.S. Alstrøm, M.P. Sørensen, N.F. Pedersen, S. Madsen, Acta Appl. Math. 115, 63 (2011). https://doi.org/10.1007/s10440-010-9580-8

    Article  MathSciNet  Google Scholar 

  7. T.S. Larsen, Type II superconductivity studied by the Ginzburg–Landau equation, Master Thesis Department of Mathematics Technical University of Denmark (2005)

  8. S.N. Artemenko, A.F. Volkov, Physics-Uspekhi 22, 295 (1979). https://doi.org/10.1070/PU1979v022n05ABEH005495

    Article  Google Scholar 

  9. T.J. Rieger, D.J. Scalapino, J.E. Mercereau, Phys. Rev. Lett. 27, 1787 (1971). https://doi.org/10.1103/PhysRevLett.27.1787

    Article  ADS  Google Scholar 

  10. K. Binder, Phys. Rev. B 8, 3423 (1973). https://doi.org/10.1103/PhysRevB.8.3423

    Article  ADS  Google Scholar 

  11. A.F. Volkov, S.M. Kogan, Sov. Phys. JETP 38, 1018 (1974)

    ADS  Google Scholar 

  12. C.M. Varma, J. Low Temp. Phys. 126, 901 (2002). https://doi.org/10.1023/A:1013890507658

    Article  ADS  Google Scholar 

  13. V.L. Vadimov, I.M. Khaymovich, A.S. Mel’nikov, Phys. Rev. B 100, 104515 (2019). https://doi.org/10.1103/PhysRevB.100.104515

    Article  ADS  Google Scholar 

  14. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press LTD, Oxford, 1960)

    MATH  Google Scholar 

  15. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (IOP Publishing Ltd, Bristol, 1990)

    MATH  Google Scholar 

  16. I.J.R. Aitchison, P. Ao, D.J. Thouless, X.-M. Zhu, Phys. Rev. B 51, 6531 (1995). https://doi.org/10.1103/PhysRevB.51.6531

    Article  ADS  Google Scholar 

  17. J. Govaerts, D. Bertrand, G. Stenuit, Supercond. Sci. Technol. 14, 463 (2001). https://doi.org/10.1088/0953-2048/14/7/308

    Article  ADS  Google Scholar 

  18. D. Bertrand, J. Govaerts, G. Stenuit, Phys. C: Supercond. 369, 339 (2002). https://doi.org/10.1007/BF001174270

    Article  ADS  Google Scholar 

  19. D. Bertrand, A Relativistic BCS Theory of Superconductivity. An Experimentally Motivated Study of Electric Fields in Superconductors, Université catholique de Louvain (2005)

  20. J.E. Hirsch, Phys. Rev. B 69, 214515 (2004). https://doi.org/10.1007/BF001174271

    Article  ADS  Google Scholar 

  21. T. Koyama, Phys. Rev. B 70, 226503 (2004). https://doi.org/10.1007/BF001174272

    Article  ADS  Google Scholar 

  22. J.E. Hirsch, Phys. Rev. B 70, 226504 (2004). https://doi.org/10.1007/BF001174273

    Article  ADS  Google Scholar 

  23. J.E. Hirsch, Phys. C: Supercond. 508, 21 (2015). https://doi.org/10.1007/BF001174274

    Article  ADS  Google Scholar 

  24. A. Peronio, F.J. Giessibl, Phys. Rev. B 94, 094503 (2016). https://doi.org/10.1007/BF001174275

    Article  ADS  Google Scholar 

  25. P.I. Arseev, S.O. Loiko, N.K. Fedorov, Physics-Uspekhi 49, 1 (2006). https://doi.org/10.1007/BF001174276

    Article  ADS  Google Scholar 

  26. M.V. Sadovskii, Quantum Field Theory, de Gruyter Studies in Mathematical Physics, (2013)

  27. M.V. Sadovskii, Statistical Physics, de Gruyter Studies in Mathematical Physics, (2012)

  28. T. Cea, C. Castellani, L. Benfatto, Phys. Rev. B 93, 180507(R) (2016). https://doi.org/10.1007/BF001174277

    Article  ADS  Google Scholar 

  29. R. Shimano, N. Tsuji, Ann. Rev. Cond. Matt. Phys. 11, 103 (2019). https://doi.org/10.1007/BF001174278

    Article  Google Scholar 

  30. M.V. Sadovskii, Diagrammatics: Lectures on Selected Problems in Condensed Matter Theory (World Scientific, London, 2006)

    Book  Google Scholar 

  31. L.S. Levitov, A.V. Shitov, Green’s Functions (Problems and Solutions (in Russian), Fizmatlit, Moscow, 2003)

  32. V.V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications (Springer, Berlin, 1997)

    Book  Google Scholar 

  33. A.J. Dahm, A. Denenstein, T.F. Finnegan, D.N. Langenberg, D.J. Scalapino, Phys. Rev. Lett. 20, 859 (1968). https://doi.org/10.1103/PhysRevLett.20.859

    Article  ADS  Google Scholar 

  34. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics: Part 2: Theory of Condensed State (Pergamon Press LTD, Oxford, 1981)

    Google Scholar 

  35. I.N. Askerzade, Phys. C: Supercond. 397, 99 (2003). https://doi.org/10.1016/j.physc.2003.07.003

    Article  ADS  Google Scholar 

  36. I.N. Askerzade, Physics-Uspekhi 49, 1003 (2006). https://doi.org/10.1070/PU2006v049n10ABEH006055

    Article  ADS  Google Scholar 

  37. H. Doh, M. Sigrist, B.K. Cho, S.I. Lee, Phys. Rev. Lett. 83, 5350 (1999). https://doi.org/10.1103/PhysRevLett.83.5350

    Article  ADS  Google Scholar 

  38. K.V. Grigorishin, Phys. Lett A. 380, 1781 (2016). https://doi.org/10.1016/j.physleta.2016.03.023

    Article  ADS  MathSciNet  Google Scholar 

  39. A.J. Leggett, Prog. Theor. Phys. 36, 901 (1966). https://doi.org/10.1143/PTP.36.901

    Article  ADS  Google Scholar 

  40. S.G. Sharapov, V.P. Gusynin, H. Beck, Eur. Phys. J. B 30, 45 (2002). https://doi.org/10.1140/epjb/e2002-00356-9

    Article  ADS  Google Scholar 

  41. T. Yanagisawa, Nov. Supercond. Mater. 1, 95 (2015). https://doi.org/10.1515/nsm-2015-0010

    Article  Google Scholar 

  42. G. Blumberg, A. Mialitsin, B.S. Dennis, M.V. Klein, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 99, 227002 (2007). https://doi.org/10.1103/PhysRevLett.99.227002

    Article  ADS  Google Scholar 

  43. D.K. Finnemore, T.F. Stromberg, C.A. Swenson, Phys. Rev. 149, 231 (1966). https://doi.org/10.1103/PhysRevLett.20.8590

    Article  ADS  Google Scholar 

  44. S.T. Sekula, R.H. Kernohan, G.R. Love, Phys. Rev. 155, 364 (1967). https://doi.org/10.1103/PhysRevLett.20.8591

    Article  ADS  Google Scholar 

  45. S.T. Sekula, R.H. Kernohan, Phys. Rev. B 5, 904 (1972). https://doi.org/10.1103/PhysRevLett.20.8592

    Article  ADS  Google Scholar 

  46. M.S. Svirskiy, The Electron Theory of Matter (Prosveshcheniye, Moscow, 1980). ((in Russian))

Download references

Acknowledgements

This research was supported by theme grant of Department of physics and astronomy of NAS of Ukraine: “Mathematical models of nonequilibrium processes in open systems” 0120U100857 and by grant of National Research Foundation of Ukraine “Models of nonequilibrium processes in colloidal systems” 2020.02/0220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Grigorishin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: “Derivation” of the Second London Equation from the First London Equation and Vice Versa

Appendix A: “Derivation” of the Second London Equation from the First London Equation and Vice Versa

Following [46], let us write the Newton equation for SC electrons (they do not experience friction) in the electric field \({\mathbf {E}}\): \(m\frac{\mathrm{d}{\mathbf {v}}}{\mathrm{d}t}=e{\mathbf {E}}\), which can be given a form:

$$\begin{aligned} \frac{\mathrm{d}{\mathbf {j}}_{s}}{\mathrm{d}t}=\frac{n_{\mathrm {s}}e^{2}}{m}{\mathbf {E}}, \end{aligned}$$
(A1)

where \({\mathbf {j}}_{s}=n_{\mathrm {s}}e{\mathbf {v}}\) is supercurrent, \(n_{\mathrm {s}}\) is density of SC electrons. Equation (A1) is the first London equation (7). Making the operation \(\mathrm {curl}\) for both sides of the equation and taking into account the Maxwell equation \(\mathrm {curl}{\mathbf {E}}=-\frac{1}{c}\frac{\partial {\mathbf {H}}}{\partial t}\), we obtain:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\left( \mathrm {curl}{\mathbf {j}}_{s}\right) =-\frac{n_{\mathrm {s}}e^{2}}{mc}\frac{\partial {\mathbf {H}}}{\partial t}. \end{aligned}$$
(A2)

Integrating over time, we obtain:

$$\begin{aligned} \text {curl}{\mathbf {j}}_{s}=-\frac{n_{\mathrm {s}}e^{2}}{mc}\left( {\mathbf {H}}-{\mathbf {H}}_{0}\right) , \end{aligned}$$
(A3)

where \({\mathbf {H}}_{0}\)—a constant of integration which does not depend on time, but it can be function of coordinates. Thus, by setting the field \({\mathbf {H}}_{0}\) we set the initial condition, i.e., configuration of the field \({\mathbf {H}}\) is determined by both response of the medium and the initial field. Supposing \({\mathbf {H}}_{0}=0\) (a sample is introduced into magnetic field), we obtain the second London equation (8). However, supposing \({\mathbf {H}}_{0}\ne 0\) (a sample in the normal state is in the magnetic field \({\mathbf {H}}_{0}\), then it is cooled below the transition temperature \(T_{c}\)), we obtain the freezing of the magnetic field inside the sample. Thus, the field \({\mathbf {H}}_{0}\) is a constant of motion, that characterizes an ideal conductor: \(\mathrm {curl}{\mathbf {E}}=-\frac{1}{c}\frac{\partial {\mathbf {B}}}{\partial t}\Rightarrow {\mathbf {B}}=\mathrm {const}\) since we have inside the sample \({\mathbf {E}}=\rho {\mathbf {j}}=0\) due to ideal conductivity \(\rho =0\). Therefore, Eq. (A3) does not describe thermodynamically steady state, this equation describes the ideal conductor which pushes out or freezes magnetic field due to the electromagnetic induction and Lenz’s rule.

From other hand, following [5] we can differentiate the second London equation in a form \({\mathbf {j}}_{s}=-\frac{c}{4\pi \lambda ^{2}}{\mathbf {A}}\), where \(\mathrm {div}{\mathbf {A}}=0\) (i.e., \({\mathbf {A}}={\mathbf {A}}_{\perp }\)), with respect to time:

$$\begin{aligned} \frac{\partial {\mathbf {j}}_{s}}{\partial t}=-\frac{c}{4\pi \lambda ^{2}}\frac{\partial {\mathbf {A}}}{\partial t}= \frac{c^{2}}{4\pi \lambda ^{2}}{\mathbf {E}}=\frac{n_{s}e^{2}}{m}{\mathbf {E}}. \end{aligned}$$
(A4)

Thus, we obtain the first London equation (A1) which is the second Newton law for SC electrons, i.e., it is equation for an ideal conductor. At the same time, the second London equation is result of minimization of the free energy functional, i.e., it is equation for a superconductor. This contradiction is resolved in Sect. 3.2 within the Anderson–Higgs mechanism. It should be noticed that in Eq. (A4) the field \({\mathbf {E}}\) is transverse field \({\mathbf {E}}={\mathbf {E}}_{\perp }=-\frac{1}{c}\frac{\partial {\mathbf {A}}_{\perp }}{\partial t}\) only. At the same time in Eq. (A1), the electric field can be longitudinal \(-\nabla \varphi -\frac{1}{c}\frac{\partial {\mathbf {A}}_{||}}{\partial t}\) also (here \(\mathrm {div}{\mathbf {A}}_{||}\ne 0\)). Thus, the first London equation (A1) cannot be obtain from the second London equation \({\mathbf {j}}_{s}=-\frac{c}{4\pi \lambda ^{2}}{\mathbf {A}}_{\perp }\) completely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorishin, K.V. Extended Time-Dependent Ginzburg–Landau Theory. J Low Temp Phys 203, 262–308 (2021). https://doi.org/10.1007/s10909-021-02580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02580-0

Keywords

Navigation