Skip to main content
Log in

Magnetic Properties of Mn2RhSi Heusler Alloy: Phase Transition and Hysteresis Behavior at a Very Low Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using Kaneyoshi approximation in the framework of effective field theory, we have carried out theoretically the magnetic phase transition and hysteresis behavior at a very low temperature in Mn2RhSi Heusler Alloy (Mn2RhSi-HA). The alloy shows to a ferrimagnetic successive phase transition while its atoms exhibit a various successive phase transition with Tt = 0.630 and TC = 1.560. At a very low temperature, we attain that the alloy has a multistep hysteresis behavior having a butterfly-like hysteresis loop with a large coercivity field while the Si1 atom shows a type-II superconducting hysteresis behavior. Step-like hysteresis behavior at low temperature is due to quantum tunneling of the magnetization. So, we suggest Mn2RhSi-HA could be a potential candidate for magnetic storage device application. Moreover, we can conclude that the competition of antiferromagnetic and ferromagnetic exchange couplings leads to the variety of magnetic phase transition and the hysteresis behavior in Mn2RhSi-HA and its atoms. We can also conclude that these atoms and their exchange interactions to other atoms make a significant contribution to controlling the hysteresis behavior of Mn2RhSi-HA, since the Mn and Rh2 core atoms have the same coercivity as that of Mn2RhSi-HA. The obtained results are consistent with the reported experimental and theoretical results of Mn2-based Heusler alloys and other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Planes, L. Ma~nosa, M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic heusler alloys, Condens. Matter. 21, 233201 (2009). https://doi.org/10.1088/0953-8984/21/23/233201

  2. D. Do, M.S. Lee, S.D. Mahanti, Effect of onsite Coulomb repulsion on thermoelectric properties of full-Heusler compounds with pseudogaps. Phys Rev B 84, 125104 (2011). https://doi.org/10.1103/PhysRevB.84.125104

    Article  ADS  Google Scholar 

  3. I. Galanakis, Appearance of half-metallicity in the quaternary Heusler alloys. J Phys Condens Matter 16, 3089 (2004). https://doi.org/10.1088/0953-8984/16/18/010

    Article  ADS  Google Scholar 

  4. S. Yousuf, D.C. Gupta, Insight into half-metallicity, spin-polarization and mechanical properties of L21 structured MnY2Z (Z= Al, Si, Ga, Ge, Sn, Sb) Heusler alloys. J Alloy Comp 735, 1245 (2018). https://doi.org/10.1016/j.jallcom.2017.11.239

    Article  Google Scholar 

  5. P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, E.F. Wassermann, Modelling the phase diagram of magnetic shape memory Heusler alloys. J Phys D: Appl Phys 39, 865–889 (2006). https://doi.org/10.1088/0022-3727/39/5/S13

    Article  ADS  Google Scholar 

  6. C. Felser, G.H. Fecher, B. Balke, Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Ed 46, 668–699 (2007). https://doi.org/10.1002/anie.200601815

    Article  Google Scholar 

  7. L. Kautzsch, F. Mende, G.H. Fecher, J. Winterlik, C. Felser, Are AuPdTM (T = Sc, Y and M = Al, Ga, In), heusler compounds superconductors without inversion symmetry? Materials 12, 2580 (2019). https://doi.org/10.3390/ma12162580

    Article  ADS  Google Scholar 

  8. R. Stinshoff, A.K. Nayak, G.H. Fecher, B. Balke, S. Ouardi, Y. Skourski, T. Nakamura, C. Felser, Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al, Phys. Rev. B. 95, 060410(R) (2017). https://doi.org/10.1103/PhysRevB.95.060410

  9. P.D. Patel, S. Shinde, S.D. Gupta, First principle calculation of structural, electronic and magnetic properties of Mn2RhSi Heusler alloy. AIP Conf Proc 2005, 040004 (2018). https://doi.org/10.1063/1.5050744

    Article  Google Scholar 

  10. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  ADS  Google Scholar 

  11. S. Ahmad Sofi, Dinesh C. Gupta, Investigation of high pressure and temperature study of thermo-physical properties in semiconducting Fe2ZrSi Heusler, Physica B 577, 411792 (2020). https://doi.org/10.1016/j.physb.2019.411792

  12. T.M. Bhat, D.C. Gupta, First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy. J Magn Magn Mater 449, 493 (2018). https://doi.org/10.1016/j.jmmm.2017.10.081

    Article  ADS  Google Scholar 

  13. S.A. Sofi, S. Yousuf, D.C. Gupta, Prediction of robustness of electronic, magnetic and thermoelectric properties under pressure and temperature variation in Co2MnAs alloy. Comput Condens Matter 16, e00375 (2019). https://doi.org/10.1016/j.cocom.2019.e00375

    Article  Google Scholar 

  14. P.D. Patel, S.M. Shinde, S.D. Gupta, P.K. Jha, A promising thermoelectric response of fully compensated ferrimagnetic spin gapless semiconducting Heusler alloy Zr2MnAl at high temperature: DFT study. Mater Res Expr 6(7), 076307 (2019). https://doi.org/10.1088/2053-1591/ab1723

    Article  ADS  Google Scholar 

  15. P.D. Patel, S. Shinde, S. D. Gupta, S.D. Dabhi, P.K. Jha, The first principle calculation of structural, electronic, magnetic, elastic, thermal and lattice dynamical properties of fully compensated ferrimagnetic spin-gapless heusler alloy Zr2MnGa, Comput. Condens. Matter. 15, 61–68 (2018). https://doi.org/10.1016/j.cocom.2018.02.003

  16. P.D. Patel, S. Shinde, S.D. Gupta, P.K. Jha, Investigation of structural and elastic stability, electronic, magnetic, thermoelectric and lattice-dynamical properties of spin gapless semiconducting heusler alloy Zr2MnIn using DFT approach. J Electron Mater 48, 1634–1642 (2019). https://doi.org/10.1007/s11664-018-06911-y

    Article  ADS  Google Scholar 

  17. T. Klimczuk, C.H. Wang, K. Gofryk, F. Ronning, J. Winterlik, G.H. Fecher, J.C. Griveau, E. Colineau, C. Felser, J.D. Thompson, D.J. Safarik, R.J. Cava, Superconductivity in the Heusler family of intermetallics. Phys Rev B 85, 174505 (2012). https://doi.org/10.1103/PhysRevB.85.174505

    Article  ADS  Google Scholar 

  18. A. Candan, A study on magnetic, electronic, elastic and vibrational properties of Ir2MnAl Heusler alloy for spintronic applications. Mater Res Express 6(9), 096571 (2019). https://doi.org/10.1088/2053-1591/ab308b

    Article  ADS  Google Scholar 

  19. J. Lyubina, Magnetocaloric materials for energy efficient cooling. J Phys D: Appl Phys 50, 053002 (2017). https://doi.org/10.1088/1361-6463/50/5/053002

    Article  ADS  Google Scholar 

  20. T. Mazet, H. Ihou-Mouko, B. Malaman, Mn3Sn2: a promising material for magnetic refrigeration. Appl Phys Lett 89, 1–4 (2006). https://doi.org/10.1063/1.2220541

    Article  Google Scholar 

  21. Q. Recour, T. Mazet, B. Malaman, Magnetocaloric properties of Mn3Sn2 from heat capacity measurements. J Appl Phys 105, 033905 (2009). https://doi.org/10.1063/1.3074093

    Article  ADS  Google Scholar 

  22. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices. Prog Mater Sci 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  23. E. Brück, O. Tegus, D.T.C. Thanh, K.H.J. Buschow, Magnetocaloric refrigeration near room temperature (invited). J Magn Magn Mater 310, 2793–2799 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1146

    Article  ADS  Google Scholar 

  24. C. Aprea, A. Greco, A. Maiorino, C. Masselli, Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature. J Phys Conf Ser 655, 012026 (2015). https://doi.org/10.1088/1742-6596/655/1/012026

    Article  Google Scholar 

  25. D. Bensaid, T. Hellal, M. Ameri, Y. Azzaz, B. Doumi, Y. Al-Douri, B. Abderrahim, F. Benzoudji, First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) heusler alloys. J Supercond Nov Magn 29(7), 1843–1850 (2016). https://doi.org/10.1007/s10948-016-3390-9

    Article  Google Scholar 

  26. Z. Ren, Y. Liu, S. Li, X. Zhang, H. Liu, Site preference and electronic structure of Mn2RhZ (Z = Al, Ga, In, Si, Ge, Sn, Sb): a theoretical study. Mater Sci Poland 34(2), 251–259 (2016). https://doi.org/10.1515/msp-2016-0043

    Article  ADS  Google Scholar 

  27. M. Chehrouri, B. Doumi, A. Mokaddem, Y. Mogulkoc, M. Berber, A. Boudali, Investigation of structural stability, elastic properties, electronic structure and ferrimagnetic behavior of Mn2RhGe full-Heusler alloy. J Alloy Compd (2017). https://doi.org/10.1016/j.jallcom.2017.06.116

    Article  Google Scholar 

  28. P.D. Patel, J.B. Pandya, S.M. Shinde, S.D. Gupta, S. Narayan, P.K. Jha, Investigation of full-heusler compound Mn2MgGe for magnetism, spintronics and thermoelectric applications: DFT study. Comput Conden Matter 23, e00472 (2020). https://doi.org/10.1016/j.cocom.2020.e00472

    Article  Google Scholar 

  29. R. Gavrea, R. Hirian, O. Isnard, V. Pop, D. Benea, Investigations on compensated ferrimagnetism in the Mn2Co0.5V0.5Al Heusler alloy, Solid State Commun. 309, 113812 (2020). https://doi.org/10.1016/j.ssc.2020.113812.

  30. M. Zemouli, A. Boudali, B. Doumi, A. Mokaddem, M. Elkeurti, F. Saadaoui, M. Driss Khodja first-principles investigation of elastic electronic and half-metallic ferrimagnetic properties in the Mn 2 RhSi Heusler Alloy. J Supercond. Nov. Magn. 29, 3187–3192 (2016). https://doi.org/10.1007/s10948-016-3719-4.

  31. P.D. Patel, S.B. Pillai, S.M. Shinde, S.D. Gupta, P.K. Jha, Electronic, magnetic, thermoelectric and lattice dynamical properties of full heusler alloy Mn2RhSi: DFT study. Physica B 550, 376–382 (2018). https://doi.org/10.1016/j.physb.2018.09.020

    Article  ADS  Google Scholar 

  32. J.G. Tan, Z.H. Liu, Y.J. Zhang, G.T. Li, H.G. Zhang, G.D. Liu, X.Q. Ma, Site preference and tetragonal distortion of Heusler alloy Mn-Ni-V. Results in Phys 12, 1182–1189 (2019). https://doi.org/10.1016/j.rinp.2018.12.096

    Article  ADS  Google Scholar 

  33. S. Ghosh, S. Ghosh, Systematic understanding of half-metallicity of ternary compounds in Heusler and Inverse Heusler structures with 3d and 4d elements. Phys Scr 94, 125001 (2019). https://doi.org/10.1088/1402-4896/ab0f6c

    Article  ADS  Google Scholar 

  34. M. Ram, A. Saxena, A.E. Aly, A. Shankar, Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC Adv 10, 7661 (2020). https://doi.org/10.1039/C9RA09303F

    Article  ADS  Google Scholar 

  35. W. Zhang, Y. Jin, R. Skomski, P. Kharel, X. Li, T. Chen, G. Zhao, D. Kim, S. Valloppilly, D.J. Sellmyer, Mn2CrGa-based heusler alloys with low net moment and high spin polarization. J Phys D: Appl Phys 51, 255001 (2018). https://doi.org/10.1088/1361-6463/aac346

    Article  ADS  Google Scholar 

  36. H. Luo, Z. Zhu, L. Ma, S. Xu, X. Zhu, C. Jiang, H. Xu, G. Wu, Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl. J Phys D: Appl Phys 41, 055010 (2008). https://doi.org/10.1088/0022-3727/41/5/055010

    Article  ADS  Google Scholar 

  37. S.T. Li, Z. Ren, X.H. Zhang, C.M. Cao, Electronic structure and magnetism of Mn2CuAl: a first-principles study. Phys. B 404, 1965–1968 (2009). https://doi.org/10.1016/j.physb.2009.03.020

    Article  ADS  Google Scholar 

  38. F. Semari, F. Dahmane, N. Baki, Y. Al-Douri, S. Akbudak, G. Uğur, Ş Uğur, A. Bouhemadou, R. Khenata, C.H. Voon, First-principle calculations of structural, electronic and magnetic investigations of Mn2RuGe1-xSnx quaternary Heusler alloys. Chinese J Phy 56(2), 567–573 (2018). https://doi.org/10.1016/j.cjph.2018.01.015

    Article  Google Scholar 

  39. A.A. Semiannikova et al, Electrical, magnetic and galvanomagnetic properties of Mn-based Heusler alloys, J. Phys.: Conf. Ser. 1389, 012150 (2019). https://doi.org/10.1088/1742-6596/1389/1/012150.

  40. O. Meshcheriakova et al., Structural, electronic, and magnetic properties of perpendicularly magnetised Mn2RhSn thin films. J Phys D: Appl Phys 48, 164008 (2015). https://doi.org/10.1088/0022-3727/48/16/164008

    Article  ADS  Google Scholar 

  41. M. Pugaczowa-Michalska, Theoretical prediction of ferrimagnetism in Mn2FeB, Mn2CoB and Mn2NiB, Intermetallics 24, 128e134 (2012). https://doi.org/10.1016/j.intermet.2012.01.004.

  42. H. Zenasni, H.I. Faraoun, C. Esling, First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure. J Magn Magn Mater 333, 162–168 (2013). https://doi.org/10.1016/j.jmmm.2013.01.003

    Article  ADS  Google Scholar 

  43. M. Ishikawa, J.L. Jorda, A. Junod, in Proc. 4th Conf. on Superconductivity in d- and f-band Metals, Karkruhe, 1982. ed. by W. Buckel, W. Weber (Kernforschungszentrum, Karlsruhe, Karlsruhe, 1982), p. 141

    Google Scholar 

  44. J.L. Jorda, M. Ishikawa, J. Muller, Phase equilibria and superconductivity in the Pd-Y-Sn system. J Less-Common Met 107, 321–330 (1985)

    Article  Google Scholar 

  45. H.Y. Uzunok, E. Karaca, S. Baǧcı, H.M. Tütüncü, Physical properties and superconductivity of Heusler compound LiGa2Rh: a first-principles calculation. Solid State Commun. 311, 113859 (2020). https://doi.org/10.1016/j.ssc.2020.113859

    Article  Google Scholar 

  46. A. Duran, Surface superconductivity in Ni50Mn36Sn14 heusler alloy. J Supercond Nov Magn 31(12), 4053–4062 (2018). https://doi.org/10.1007/s10948-018-4686-8

    Article  Google Scholar 

  47. A. Duran, Lattice location effect of Ni50Mn36Sn14 heusler alloy. J Supercond Nov Magn 31(4), 1101–1109 (2018). https://doi.org/10.1007/s10948-017-4274-3

    Article  Google Scholar 

  48. A. Duran, Soft magnetic characteristic of Ni50Mn36Sn14 Heusler alloy, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33(2), 139–152 (2018). https://doi.org/10.21605/cukurovaummfd.509100.

  49. N. Şarli, M. Keskin, Superconducting phase diagram of the Yttrium, Barium and YBa-core in YBCO by an ising Model. J Exp Theor Phys 12(3), 516–524 (2018). https://doi.org/10.1134/S1063776118090157

    Article  Google Scholar 

  50. T. Kaneyoshi, Phase transition in a Spin-1/2 and Spin-1 ising bilayer film with non-magnetic inter-layers. J Supercond Nov Magn 31(10), 3331–3337 (2018). https://doi.org/10.1007/s10948-018-4606-y

    Article  Google Scholar 

  51. T. Kaneyoshi, Unique phase diagrams in a graphene-like transverse Ising nanoparticle. Int J Mod Phy B 32(23), 1850255 (2018). https://doi.org/10.1142/S0217979218502557

    Article  ADS  Google Scholar 

  52. T. Kaneyoshi, Mixed-spin ferrimagnetic bilayer films with a random crystal field distribution. J Phys Chem Solids 119, 202–209 (2018). https://doi.org/10.1016/j.jpcs.2017.12.003

    Article  ADS  Google Scholar 

  53. T. Kaneyoshi, Random single-ion anisotropy in an Ising bilayer film with non-magnetic inter-layers. J Supercond Nov Magn 458, 75–79 (2018). https://doi.org/10.1016/j.jmmm.2018.01.007

    Article  Google Scholar 

  54. T. Kaneyoshi, Effects of indirect exchange interactions in a mixed-spin bilayer film with nonmagnetic layers. J Supercond Nov Magn 31(7), 2149–2155 (2018). https://doi.org/10.1007/s10948-017-4463-0

    Article  Google Scholar 

  55. T. Kaneyoshi, Ferrimagnetism in an ising bilayer film with a transverse field and nonmagnetic interlayers. J Supercond Nov Magn 31(6), 1949–1954 (2018). https://doi.org/10.1007/s10948-017-4435-4

    Article  Google Scholar 

  56. T. Kaneyoshi, Unique phenomena in transverse ising nanoislands. J Supercond Nov Magn 32, 591 (2019). https://doi.org/10.1007/s10948-018-4741-5

    Article  Google Scholar 

  57. T. Kaneyoshi, Unconventional effects of transverse fields in a transverse ising nanotube. J Supercond Nov Magn 31, 483 (2018). https://doi.org/10.1007/s10948-017-4231-1

    Article  Google Scholar 

  58. G.D. Yıldız, Intersection Magnetization and temperature revealed by FCC-FCT Phase transformation in the FePd binary alloy system. J Supercond Nov Magn 33(7), 2051–2058 (2020). https://doi.org/10.1007/s10948-020-05447-9

    Article  Google Scholar 

  59. E. Vatansever, U. Akinci, Isotropic and anisotropic quantum Heisenberg models under bond randomness: an effective-field theory study. Physica A 512, 818–823 (2018). https://doi.org/10.1016/j.physa.2018.08.118

    Article  ADS  MathSciNet  Google Scholar 

  60. Ü. Akıncı, Y. Yüksel, E. Vatansever, Magnetocaloric properties of the spin-S (S ≥ 1) Ising model on a honeycomb lattice. Phy Lett Sect A Gen Atom Solid State Phy 382(45), 3238–3243 (2018). https://doi.org/10.1016/j.physleta.2018.09.022

    Article  Google Scholar 

  61. M. Keskin, E. Kantar, Influence of the shape on magnetic properties of ising nanostructures. J Supercond Nov Magn 30, 1849 (2017). https://doi.org/10.1007/s10948-017-3985-9

    Article  Google Scholar 

  62. M. Ertaş, M. Keskin, Dynamic hysteresis features in a two-dimensional mixed Ising system. Phy Lett, Sect A: Gen Atom Solid State Phy 379(26–27), 1576–1583 (2015). https://doi.org/10.1016/j.physleta.2015.04.017

    Article  Google Scholar 

  63. E. Kantar, M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: Effective-field theory approach. J Magn Magn Mater 349, 165–172 (2014). https://doi.org/10.1016/j.jmmm.2013.08.034

    Article  ADS  Google Scholar 

  64. Y. Kocakaplan, M. Keskin, Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system. J. Appl. Phys. 116(9), 093904 (2014). https://doi.org/10.1063/1.4894509

    Article  ADS  Google Scholar 

  65. N. Şarlı, G.D. Yıldız, Y.G. Yıldız, N.K. Yağcı, Magnetic properties of the martensitic transformations with twinned and detwinned. Physica B 553, 161–168 (2019). https://doi.org/10.1016/j.physb.2018.10.026

    Article  ADS  Google Scholar 

  66. N. Şarli, Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Physica E 83, 22–29 (2016). https://doi.org/10.1016/j.physe.2016.04.009

    Article  ADS  Google Scholar 

  67. N. Şarli, Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect. Diam Relat Mater 64, 103–109 (2016). https://doi.org/10.1016/j.diamond.2016.01.027

    Article  ADS  Google Scholar 

  68. N. Şarli, S. Akbudak, Y. Polat, M.R. Ellialtioğlu, Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A 434, 194–200 (2015). https://doi.org/10.1016/j.physa.2015.04.002

    Article  ADS  Google Scholar 

  69. N. Şarli, Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices. J Magn Magn Mater 374, 238–244 (2015). https://doi.org/10.1016/j.jmmm.2014.08.008

    Article  ADS  Google Scholar 

  70. N. Şarli, S. Akbudak, M.R. Ellialtioǧlu, The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Physica B 452, 18–22 (2014). https://doi.org/10.1016/j.physb.2014.06.044

    Article  ADS  Google Scholar 

  71. N. Şarli, The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system. Physica E 63, 324–328 (2014). https://doi.org/10.1016/j.physe.2014.06.028

    Article  ADS  Google Scholar 

  72. Y.G. Yıldız, Exchange bias effect revealed by irreversible structural transformation between the HCP and FCC structures of Cobalt nanoparticles. Phase Trans 93(4), 429–437 (2020). https://doi.org/10.1080/01411594.2020.1743837

    Article  Google Scholar 

  73. N. Şarli, M. Keskin, Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun 152(5), 354–359 (2012). https://doi.org/10.1016/j.ssc.2011.12.015

    Article  ADS  Google Scholar 

  74. M. Keskin, N. Şarlı Magnetic properties of the binary Nickel/Bismuth alloy, J. Magn. Magn. Mater. 437, 1–6 (2017). https://doi.org/10.1016/j.jmmm.2017.04.053

  75. N. Şarlı, F. Ak, E.G. Özdemir, B. Saatçi, Z. Merdan, Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment, Physica B: Condensed Matter 560, 46–50 (2019). https://doi.org/10.1016/j.physb.2019.02.031

  76. N. Şarlı, M. Keskin, Effects of the copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chinese J Phy 59, 256–264 (2019). https://doi.org/10.1016/j.cjph.2019.03.007

    Article  Google Scholar 

  77. Y.G. Yıldız, Origin of the hardness in the monolayer nanographene. Phys. Lett. A 383(19), 2333–2338 (2019). https://doi.org/10.1016/j.physleta.2019.04.039

    Article  ADS  Google Scholar 

  78. N. Şarlı, Y. Dağdemir, B. Saatçi, Small thermal magnetization loop revealed by bain strain. J Supercond Nov Magn (2019). https://doi.org/10.1007/s10948-019-05181-x

    Article  Google Scholar 

  79. B. Saatçi, N. Şarlı, Y. Dağdemir, Y.G. Yıldız, H.Y. Ocak, Prediction of the Bain spin memory materials (BSMM) revealed by Kaneyoshi theory. Philos Mag Lett Press (2020). https://doi.org/10.1080/09500839.2020.1765264

    Article  Google Scholar 

  80. S. Güldal, Y. Polat, Edge and surface antiferromagnetism in ABO3 perovskite-type nanoparticle within the effective field theory. Phil Mag 100(5), 642–657 (2020). https://doi.org/10.1080/14786435.2019.1698781

    Article  ADS  Google Scholar 

  81. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    MATH  Google Scholar 

  82. A. Özkan, B. Kutlu, The effect of the heating rate on the phase transition. Phase Trans. 89(12), 1183–1195 (2016). https://doi.org/10.1080/01411594.2016.1156678

    Article  Google Scholar 

  83. K. Binder, Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783–859 (1987)

    Article  ADS  Google Scholar 

  84. A. Duran, B. Kutlu, A. Günen, The (kBTC/zJ,k) Phase diagram for the D/J=1 on the four-dimensional blume–emery–griffiths (BEG) model. J. Supercond. Nov. Magn. 24(1–2), 623–627 (2011). https://doi.org/10.1007/s10948-010-0957-8

  85. B. Dalal, B. Sarkar, V.D. Ashok, S.K.J. De, Evolution of magnetic properties and exchange interactions in Ru doped YbCrO3, Phys.: Condens. Matter. 28, 426001 (2016). https://doi.org/10.1088/0953-8984/28/42/426001

  86. P.J. Ibarra-Gaytán, L. Frolova, L. Galdun, T. Ryba, P. Diko, V. Kavecansky, J.L. Sánchez Llamazares, Z. Vargova, R. Varga, Glass-coated Ni2MnGa microwires with narrow structural transition range and enhanced magnetocaloric effect at low fields, J. Alloys Compd. 786, 65–70 (2019). https://doi.org/10.1016/j.jallcom.2019.01.305

  87. N. Şarlı, M. Keskin, Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy. Chinese J Phy 60, 502–509 (2019). https://doi.org/10.1016/j.cjph.2019.05.029

    Article  Google Scholar 

  88. V.V. Marchenkova, V. Yu. Irkhina, Yu. A. Perevozchikovaa, P. B. Terent’eva, A.A. Semiannikova, E.B. Marchenkova, M. Eisterer, kinetic properties and half-metallic magnetism in Mn2YAl heusler alloys, J. Experiment. Theor. Phy. 128(6), 919–925 (2019). https://doi.org/10.1134/S1063776119060049

  89. R. Stinshoff, G.H. Fecher, S. Chadov, A.K. Nayak, B. Balke, S. Ouardi, T. Nakamura, C. Felser, Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system. AIP Adv. 7, 105009 (2017). https://doi.org/10.1063/1.5000351

    Article  ADS  Google Scholar 

  90. E. Kantar, Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface, Solid State. Commun. 263, 31–37 (2017). https://doi.org/10.1016/j.ssc.2017.07.006

  91. V. Luis De Los Santos, D. Angel Bustamante, J.C. Gonzalez, L. Juan Feijoo, A. Ana Osorio, Thanos Mitrelias, Yutaka Majima, Crispin H.W. Barnes, Magnetic properties of the superconductor LaCaBaCu3O7, Open Superconduct. J. 2, 19–27 (2010). https://doi.org/10.2174/1876537801002010019

  92. J.R. Iglesias, J.I. Espeso, N. Marcano, J.C. Gómez Sal, Cluster model with random anisotropy for hysteresis jumps in CeNi1−xCux alloys. Phys. Rev. B. 79, 195128 (2009). https://doi.org/10.1103/PhysRevB.79.195128

  93. E. Restrepo-Parra, J.D. Agudelo-Giraldo, J. Restrepo, Thickness and bilayer number dependence on exchange bias in ferromagnetic/antiferromagnetic multilayers based on La1−xCaxMnO3. Physica B. 440, 61–66 (2014). https://doi.org/10.1103/PhysRevB.79.195128

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The author declared that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Duran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, A. Magnetic Properties of Mn2RhSi Heusler Alloy: Phase Transition and Hysteresis Behavior at a Very Low Temperature. J Low Temp Phys 203, 127–142 (2021). https://doi.org/10.1007/s10909-021-02579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02579-7

Keywords

Navigation