Skip to main content
Log in

Provenance of Lower Carboniferous Bauxite Deposits in Northern Guizhou, China: Constraints from Geochemistry and Detrital Zircon U-Pb Ages

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Lower Carboniferous Jiujialu Formation bauxite deposits of northern Guizhou Province, China, are a Kazakhstan subtype of karst bauxite deposits. The provenance of the Jiujialu Formation has long been debated, with uncertainty about the formation of the bauxite deposits. Here we report new geochemical data that indicate the affinity between the Lower-Middle Ordovician clastic rocks and argillaceous dolostones and the overlying Carboniferous bauxite deposits, all of which are characterized by high Al2O3, K2O, and ΣREE contents, flat post-Archean Australian shale (PAAS)-normalized REE patterns, and uniform immobile element ratios (TiO2/Al2O3, Nb/TiO2, and Zr/TiO2). Their similar detrital zircon age distributions further indicate the link between the bauxite deposits and the clastic rocks and argillaceous dolostones. Zircon age spectra of clastic rocks of the Lower Silurian Hanchiatien Formation in northern Guizhou match those of the bauxite deposits, with a maximum age peak at ∼980 Ma and other secondary age peaks, suggesting these clastic rocks may represent the provenance of the bauxite deposits. The youngest detrital zircons (∼445 Ma) occur only in the bauxite deposits and are probably sourced from K-bentonite beds of the Ordovician-Silurian transition. Our analyses indicate that the source materials of the bauxite deposits in the Jiujialu Formation are of mixed provenance: Lower-Middle Ordovician aluminosilicate rocks and argillaceous dolostones of the underlying strata, and Lower Silurian clastic rocks and K-bentonite from adjacent areas. A comparison of Early Carboniferous bauxitic provenances in northern and central Guizhou indicates that paleotopography was the major factor controlling the provenance of these bauxite deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Ahmadnejad, F., Zamanian, H., Taghipour, B., et al., 2017. Mineralogical and Geochemical Evolution of the Bidgol Bauxite Deposit, Zagros Mountain Belt, Iran: Implications for Ore Genesis, Rare Earth Elements Fractionation and Parental Affinity. Ore Geology Reviews, 86: 755–783. https://doi.org/10.1016/j.oregeorev.2017.04.006

    Article  Google Scholar 

  • Bárdossy, G., 1982. Karst Bauxites: Bauxite Deposits on Carbonate Rocks. Elsevier, Amsterdam. 441

    Google Scholar 

  • Bárdossy, G., 1994. Carboniferous to Jurassic Bauxite Deposits as Paleoclimatic and Paleogeographic Indicators. Global Environments and Resources, 17: 283–293

    Google Scholar 

  • Bárdossy, G., Combes, P. J., 1999. Karst Bauxites: Interfingering of Deposition and Palaeoweathering. Blackwell Science, Oxford. 189–206

    Google Scholar 

  • BGMRGZP (Bureau of Geologic and Mineral Resource of Guizhou Province), 2017. Regional Geology of China, Guizhou Province. Geological Press House, Beijing (in Chinese)

    Google Scholar 

  • Bogatyrev, B. A., Zhukov, V. V., Tsekhovsky, Y. G., 2009. Formation Conditions and Regularities of the Distribution of Large and Superlarge Bauxite Deposits. Lithology and Mineral Resources, 44(2): 135–151. https://doi.org/10.1134/s0024490209020035

    Article  Google Scholar 

  • Boni, M., Reddy, S. M., Mondillo, N., et al., 2012. A Distant Magmatic Source for Cretaceous Karst Bauxites of Southern Apennines (Italy), Revealed through SHRIMP Zircon Age Dating. Terra Nova, 24(4): 326–332. https://doi.org/10.1111/j.1365-3121.2012.01068.x

    Article  Google Scholar 

  • Braun, J. J., Pagel, M., Herbilln, A., et al., 1993. Mobilization and Redistribution of REEs and Thorium in a Syenitic Lateritic Profile: A Mass Balance Study. Geochimica et Cosmochimica Acta, 57(18): 4419–4434. https://doi.org/10.1016/0016-7037(93)90492-f

    Article  Google Scholar 

  • Brimhall, G. H., Lewis, C. J., Ague, J. J., et al., 1988. Metal Enrichment in Bauxites by Deposition of Chemically Mature Aeolian Dust. Nature, 333(6176): 819–824. https://doi.org/10.1038/333819a0

    Article  Google Scholar 

  • Combes, P. J., Bárdossy, G., 1995. Geodynamic of Bauxitic in the Tethyan Realm. Springer, Boston. 347–365

    Google Scholar 

  • Comer, J. B., Naeser, C. W., McDowell, F. W., 1980. Fission-Track Ages of Zircon from Jamaican Bauxite and Terra Rossa. Economic Geology, 75(1): 117–121. https://doi.org/10.2113/gsecongeo.75.1.117

    Article  Google Scholar 

  • D’Argenio, B., Mindszenty, A. 1995., Bauxites and Related Paleokarst: Tectonic and Climatic Event Markers at Regional Unconformities. Eclogae Geologicae Helvetiae, 88(3): 453–499

    Google Scholar 

  • Deng, X., Yang, K. G., Liu, Y. L., et al., 2010. Characteristics and Tectonic Evolution of Qianzhong Uplift. Earth Science Frontiers, 17(3): 79–89 (in Chinese with English Abstract)

    Google Scholar 

  • Du, X. B., Lu, Y. C., Duan, D., et al., 2020. Was Volcanic Activity during the Ordovician-Silurian Transition in South China Part of a Global Phenomenon? Constraints from Zircon U-Pb Dating of Volcanic Ash Beds in Black Shales. Marine and Petroleum Geology, 114: 104209. https://doi.org/10.1016/j.marpetgeo.2019.104209

    Article  Google Scholar 

  • Esmaeily, D., Rahimpour-Bonab, H., Esna-Ashari, A., et al., 2010. Petrography and Geochemistry of the Jajarm Karst Bauxite Ore Deposit, Ne Iran: Implications for Source Rock Material and Ore Genesis. Turkish Journal of Earth Sciences, 19(2): 267–284. https://doi.org/10.3906/yer-0806-15

    Google Scholar 

  • Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5/6): 289–302. https://doi.org/10.1016/j.jseaes.2008.01.001

    Article  Google Scholar 

  • Gu, J., Huang, Z. L., Fan, H. P., et al., 2013. Provenance of Lateritic Bauxite Deposits in the Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou Province, China: LA-ICP-MS and SIMS U-Pb Dating of Detrital Zircons. Journal of Asian Earth Sciences, 70/71: 265–282. https://doi.org/10.1016/j.jseaes.2013.03.018

    Article  Google Scholar 

  • He, X. Q., Xiao, J. F., Wang, S. Y., 2005. The Study on the Oianzhong Upheaval. Guizhou Geology, 22(2): 83–89 (in Chinese with English Abstract)

    Google Scholar 

  • He, Y. Y., Niu, Z. J., Zhang, Z. Z., et al., 2020. Detrital Zircons of the Meitan Formation During Ordovician in Northeastern Guizhou, It’s Significance for Provenance-Tectonic and Implications for Metallogenic Chronology. Geology in China, 47(4): 1025–1040 (in Chinese with English Abstract)

    Google Scholar 

  • Hofmann, M. H., Li, X. H., Chen, J., et al., 2016. Provenance and Temporal Constraints of the Early Cambrian Maotianshan Shale, Yunnan Province, China. Gondwana Research, 37: 348–361. https://doi.org/10.1016/j.gr.2015.08.015

    Article  Google Scholar 

  • Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  • Hou, Y. L., Zhong, Y. T., Xu, Y. G., et al., 2017. The Provenance of Late Permian Karstic Bauxite Deposits in SW China, Constrained by the Geochemistry of Interbedded Clastic Rocks, and U-Pb-Hf-O Isotopes of Detrital Zircons. Lithos, 278–281: 240–254. https://doi.org/10.1016/j.lithos.2017.01.013

    Article  Google Scholar 

  • Hu, Y. H., Zhou, J. B., Song, B., et al., 2008. SHRIMP Zircon U-Pb Dating from K-Bentonite in the Top of Ordovician of Wangjiawan Section, Yichang, Hubei, China. Science in China Series D: Earth Sciences, 51(4): 493–498. https://doi.org/10.1007/s11430-008-0028-1

    Article  Google Scholar 

  • Huang, X., Zhang, X. H., Du, Y. S., et al., 2012. Age of Bauxite Forming in Northern Guizhou. Geological Science and Technology Information, 31(3): 49–54 (in Chinese with English Abstract)

    Google Scholar 

  • Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5–E6. https://doi.org/10.1038/nature08048

    Article  Google Scholar 

  • Lan, Z. W., Li, X. H., Chu, X. L., et al., 2017. SIMS U-Pb Zircon Ages and Ni-Mo-PGE Geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE Mineralization and Stratigraphic Correlations. Journal of Asian Earth Sciences, 137: 141–162. https://doi.org/10.1016/j.jseaes.2016.12.046

    Article  Google Scholar 

  • Li, P. G., Yu, W. C., Du, Y. S., et al., 2020. Influence of Geomorphology and Leaching on the Formation of Permian Bauxite in Northern Guizhou Province, South China. Journal of Geochemical Exploration, 210: 106446. https://doi.org/10.1016/j.gexplo.2019.106446

    Article  Google Scholar 

  • Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1/2/3/4): 85–109. https://doi.org/10.1016/s0301-9268(02)00208-5

    Article  Google Scholar 

  • Liao, S. F., Liang, T. R., 1991. Bauxite Geology in China. Science and Technology Publishing House of Guizhou, Guiyang. 277 (in Chinese)

    Google Scholar 

  • Ling, K. Y., Zhu, X. Q., Tang, H. S., et al., 2017. Importance of Hydrogeological Conditions during Formation of the Karstic Bauxite Deposits, Central Guizhou Province, Southwest China: A Case Study at Lindai Deposit. Ore Geology Reviews, 82: 198–216. https://doi.org/10.1016/j.oregeorev.2016.11.033

    Article  Google Scholar 

  • Ling, K. Y., Zhu, X. Q., Tang, H. S., et al., 2018. Geology and Geochemistry of the Xiaoshanba Bauxite Deposit, Central Guizhou Province, SW China: Implications for the Behavior of Trace and Rare Earth Elements. Journal of Geochemical Exploration, 190: 170–186. https://doi.org/10.1016/j.gexplo.2018.03.007

    Article  Google Scholar 

  • Liu, B. J., Xu X. S., 1994. Atlas of the Palaeogeography of South China (Sinian-Triassic). Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Liu, P., 1987. The Initial Discussion on Guizhou Bauxite Deposit. Guizhou Geology, 4(1): 3–14 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, P., 1991. Another Discussion on Guizhou Bauxite Deposits—A Study of Houcao Bauxite Material Resources According to Chemical Composition Features. Guizhou Geology, 8(4): 313–321 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, P., 1999. Geochemical Characteristics of Carboniferous Bauxite Deposits in Central Guizhou-Southern Sichuan. Regional Geology of China, 18(2):210–217 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, P., Liao, Y. C., 2012. A Tentative Discussion on the Age of Bauxite-Bearing Rock Series in Central Guizhou-Southern Chongqing Area. Geology in China, 39(3): 661–682 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, X. F., Wang, Q. F., Feng, Y. W., et al., 2013. Genesis of the Guangou Karstic Bauxite Deposit in Western Henan, China. Ore Geology Reviews, 55: 162–175. https://doi.org/10.1016/j.oregeorev.2013.06.002

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Ludwig, K. R., 2008. Isoplot 3.70: A Geochronological Toolkit Formicrosoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 26–35

    Google Scholar 

  • MacLean, W. H., 1990. Mass Change Calculations in Altered Rock Series. Mineralium Deposita, 25(1): 44–49. https://doi.org/10.1007/bf03326382

    Article  Google Scholar 

  • MacLean, W. H., Barrett, T. J., 1993. Lithogeochemical Techniques Using Immobile Elements. Journal of Geochemical Exploration, 48(2): 109–133. https://doi.org/10.1016/0375-6742(93)90002-4

    Article  Google Scholar 

  • MacLean, W. H., Bonavia, F. F., Sanna, G., 1997. Argillite Debris Converted to Bauxite during Karst Weathering: Evidence from Immobile Element Geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita, 32(6): 607–616. https://doi.org/10.1007/s001260050126

    Article  Google Scholar 

  • MacLean, W. H., Kranidiotis, P., 1987. Immobile Elements as Monitors of Mass Transfer in Hydrothermal Alteration; Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82(4): 951–962. https://doi.org/10.2113/gsecongeo.82.4.951

    Article  Google Scholar 

  • Mameli, P., Mongelli, G., Oggiano, G., et al., 2007. Geological, Geochemical and Mineralogical Features of Some Bauxite Deposits from Nurra (Western Sardinia, Italy): Insights on Conditions of Formation and Parental Affinity. International Journal of Earth Sciences, 96(5): 887–902. https://doi.org/10.1007/s00531-006-0142-2

    Article  Google Scholar 

  • McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Mineralogical Society of America, Washington, D.C. 170–200

    Google Scholar 

  • Mongelli, G., 1997. Ce-Anomalies in the Textural Components of Upper Cretaceous Karst Bauxites from the Apulian Carbonate Platform (Southern Italy). Chemical Geology, 140(1/2): 69–79. https://doi.org/10.1016/s0009-2541(97)00042-9

    Article  Google Scholar 

  • Mongelli, G., Boni, M., Buccione, R., et al., 2014. Geochemistry of the Apulian Karst Bauxites (Southern Italy): Chemical Fractionation and Parental Affinities. Ore Geology Reviews, 63: 9–21. https://doi.org/10.1016/j.oregeorev.2014.04.012

    Article  Google Scholar 

  • Mongelli, G., Buccione, R., Gueguen, E., et al., 2016. Geochemistry of the Apulian Allochthonous Karst Bauxite, Southern Italy: Distribution of Critical Elements and Constraints on Late Cretaceous Peri-Tethyan Palaeogeography. Ore Geology Reviews, 77: 246–259. https://doi.org/10.1016/j.oregeorev.2016.03.002

    Article  Google Scholar 

  • Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279(5710): 206–210. https://doi.org/10.1038/279206a0

    Article  Google Scholar 

  • Niu, X. S., Feng, C. M., Liu, J., 2007. Formation Mechanism and Time of Qianzhong Uplift. Marine Origin Petroleum Geology, 12(2): 46–50 (in Chinese with English Abstract)

    Google Scholar 

  • Okada, Y., Sawaki, Y., Komiya, T., et al., 2014. New Chronological Constraints for Cryogenian to Cambrian Rocks in the Three Gorges, Weng’an and Chengjiang Areas, South China. Gondwana Research, 25(3): 1027–1044. https://doi.org/10.1016/j.gr.2013.05.001

    Article  Google Scholar 

  • Price, G. D., Valdes, P. J., Sellwood, B. W., 1997. Prediction of Modern Bauxite Occurrence: Implications for Climate Reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 131(1/2): 1–13. https://doi.org/10.1016/s0031-0182(96)00145-9

    Article  Google Scholar 

  • Rong, J. Y., Chen, X., Wang, Y., 2011. Northward Expansion of Central Guizhou Oldland through the Ordovician and Silurian Transition: Evidence and Implications. Sci. Sin. Terrae., 41: 1407–1415 (in Chinese with English Abstract)

    Google Scholar 

  • Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2

    Article  Google Scholar 

  • Shi, X., Yu, J. X., Chen, B., et al., 2014. Palynology of the Lower Permian Dazhuyuan and Liangshan Formations in Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou Province. Journal of Paleogeography, 16(2): 217–226 (in Chinese with English Abstract)

    Google Scholar 

  • Spencer, C. J., Kirkland, C. L., Taylor, R. J. M., 2016. Strategies Towards Statistically Robust Interpretations of in situ U-Pb Zircon Geochronology. Geoscience Frontiers, 7(4): 581–589. https://doi.org/10.1016/j.gsf.2015.11.006

    Article  Google Scholar 

  • Su, W. B., He, L. Q., Wang, Y. B., 2003. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China (Series D), 46(11): 1121–1133. https://doi.org/10.1360/01yd0225

    Google Scholar 

  • Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111–130. https://doi.org/10.1016/j.gr.2008.06.004

    Article  Google Scholar 

  • Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1/2): 99–126. https://doi.org/10.1016/j.precamres.2009.03.010

    Article  Google Scholar 

  • Sun, W. H., Zhou, M. F., Yan, D. P., et al., 2008. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1/2): 213–236. https://doi.org/10.1016/j.precamres.2008.08.001

    Article  Google Scholar 

  • Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312/313: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

    Article  Google Scholar 

  • Wang, L. J., Yu, J. H., O’Reilly, S. Y., et al., 2008. Grenvillian Orogeny in the Southern Cathaysia Block: Constraints from U-Pb Ages and Lu-Hf Isotopes in Zircon from Metamorphic Basement. Science Bulletin, 53(19): 3037–3050. https://doi.org/10.1007/s11434-008-0262-0

    Article  Google Scholar 

  • Wang, Q. F., Deng, J., Liu, X. F., et al., 2010. Discovery of the REE Minerals and Its Geological Significance in the Quyang Bauxite Deposit, West Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701–712. https://doi.org/10.1016/j.jseaes.2010.05.005

    Article  Google Scholar 

  • Wang, Q. F., Deng, J., Liu, X. F., et al., 2016. Provenance of Late Carboniferous Bauxite Deposits in the North China Craton: New Constraints on Marginal Arc Construction and Accretion Processes. Gondwana Research, 38: 86–98. https://doi.org/10.1016/j.gr.2015.10.015

    Article  Google Scholar 

  • Wang, Q. S. 1988., A Discussion on Metallogenic Conditions and Origin of Zunyi Bauxite Deposits. Guizhou Geology, 5(2): 28–36 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, R. X., Wang, Q. F., Huang, Y. X., et al., 2018. Combined Tectonic and Paleogeographic Controls on the Genesis of Bauxite in the Early Carboniferous to Permian Central Yangtze Island. Ore Geology Reviews, 101: 468–480. https://doi.org/10.1016/j.oregeorev.2018.07.013

    Article  Google Scholar 

  • Wang, X. M., Jiao, Y. Q., Du, Y. S., et al., 2013. REE Mobility and Ce Anomaly in Bauxite Deposit of WZD Area, Northern Guizhou, China. Journal of Geochemical Exploration, 133: 103–117. https://doi.org/10.1016/j.gexplo.2013.08.009

    Article  Google Scholar 

  • Weng, S. F., Lei, Z. Y., Zhao, S., et al., 2011. Relation between Richening, Preserving and Paleokarst Landform of Xianrenyan Bauxite Deposit in Zunyi. Guizhou Geology, 28(4): 260–264 (in Chinese with English Abstract)

    Google Scholar 

  • Weng, S. F., Yu, W. C., Algeo, T. J., et al., 2019. Giant Bauxite Deposits of South China: Multistage Formation Linked to Late Paleozoic Ice Age (LPIA) Eustatic Fluctuations. Ore Geology Reviews, 104: 1–13. https://doi.org/10.1016/j.oregeorev.2018.10.014

    Article  Google Scholar 

  • Wu, L., Jia, D., Li, H. B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974–980. https://doi.org/10.1017/s0016756810000725

    Article  Google Scholar 

  • Xia, X. P., Nie, X. S., Lai, C. K., et al., 2016. Where Was the Ailaoshan Ocean and when did It Open: A Perspective Based on Detrital Zircon U-Pb Age and Hf Isotope Evidence. Gondwana Research, 36: 488–502. https://doi.org/10.1016/j.gr.2015.08.006

    Article  Google Scholar 

  • Xiong, C., Chen, H. D., Niu, Y. L., et al., 2018. Provenance, Depositional Setting, and Crustal Evolution of the Cathaysia Block, South China: Insights from Detrital Zircon U-Pb Geochronology and Geochemistry of Clastic Rocks. Geological Journal, 54(2): 897–912. https://doi.org/10.1002/gj.3253

    Article  Google Scholar 

  • Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518(15): 13–25. https://doi.org/10.1016/j.epsl.2019.04.020

    Article  Google Scholar 

  • Yang, S. J., Wang, Q. F., Zhang, Q. Z., et al., 2018. Terrestrial Deposition Processes of Quaternary Gibbsite Nodules in the Yongjiang Basin, Southeastern Margin of Tibet, and Implication for the Genesis of Ancient Karst Bauxite. Sedimentary Geology, 373: 292–306. https://doi.org/10.1016/j.sedgeo.2018.06.010

    Article  Google Scholar 

  • Yu, J. H., O’Reilly, S. Y., Wang, L. J., et al. 2008. Where Was South China in the Rodinia Supercontinent? Precambrian Research, 164(1/2): 1–15. https://doi.org/10.1016/j.precamres.2008.03.002

    Article  Google Scholar 

  • Yu, J. H., O’Reilly, S. Y., Wang, L. J. et al. 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1–4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016

    Article  Google Scholar 

  • Yu, J. H., O’Reilly, Y. S., Wang, L. J., et al., 2007. Finding of Ancient Materials in Cathaysia and Implication for the Formation of Precambrian Crust. Chinese Science Bulletin, 52(1): 13–22. https://doi.org/10.1007/s11434-007-0008-4

    Article  Google Scholar 

  • Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Mixed Volcanogenic-Lithogenic Sources for Permian Bauxite Deposits in Southwestern Youjiang Basin, South China, and Their Metallogenic Significance. Sedimentary Geology, 341: 276–288. https://doi.org/10.1016/j.sedgeo.2016.04.016

    Article  Google Scholar 

  • Yu, W. C., Algeo, T. J., Yan, J. X., et al., 2019. Climatic and Hydrologic Controls on Upper Paleozoic Bauxite Deposits in South China. Earth-Science Reviews, 189: 159–176. https://doi.org/10.1016/j.earscirev.2018.06.014

    Article  Google Scholar 

  • Yu, W. C., Du, Y. S., Cawood, P. A., et al., 2015. Detrital Zircon Evidence for the Reactivation of an Early Paleozoic Syn-Orogenic Basin along the North Gondwana Margin in South China. Gondwana Research, 28(2): 769–780. https://doi.org/10.1016/j.gr.2014.07.014

    Article  Google Scholar 

  • Yu, W. C., Du, Y. S., Zhou, Q., et al., 2014. Palaeoclimate of the Early Permian: Evidence from Characteristics of Bauxite Beds in Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou Province. Journal of Paleogeography, 16(1): 30–40 (in Chinese with English Abstract)

    Google Scholar 

  • Zamanian, H., Ahmadnejad, F., Zarasvandi, A., 2016. Mineralogical and Geochemical Investigations of the Mombi Bauxite Deposit, Zagros Mountains, Iran. Geochemistry, 76(1): 13–37. https://doi.org/10.1016/j.chemer.2015.10.001

    Article  Google Scholar 

  • Zhang, Y. B., Zhou, Z. Y., Zhang, J. M., 2002. Sedimentary Differentiation during the Latest Early Ordovician—Earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302–314 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. https://doi.org/10.1016/j.precamres.2012.09.017

    Article  Google Scholar 

  • Zhao, L. H., Liu, X. F., 2019. Metallogenic and Tectonic Implications of Detrital Zircon U-Pb, Hf Isotopes, and Detrital Rutile Geochemistry of Late Carboniferous Karstic Bauxite on the Southern Margin of the North China Craton. Lithos, 350/351: 105222. https://doi.org/10.1016/j.lithos.2019.105222

    Article  Google Scholar 

  • Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2): 57–69. https://doi.org/10.1016/j.precamres.2010.06.021

    Article  Google Scholar 

  • Zhao, Y. L., Li, J. Y., Rong, K. F., et al. 1989. The Effect of Karstification in the Palaeogeographic Study: A Supplement and Discussion About the Article “a Discussion on Several Principles in the Paiaeogeographic Study. Guizhou Geology, 1(6): 60–64 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2): 127–150. https://doi.org/10.1016/j.lithos.2006.10.003

    Article  Google Scholar 

  • Zhou, M. F., Ma, Y. X., Yan, D. P., et al., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2): 19–38. https://doi.org/10.1016/j.precamres.2005.11.002

    Article  Google Scholar 

  • Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. https://doi.org/10.1016/s0012-821x(01)00595-7

    Article  Google Scholar 

  • Zhou, W. L., Liu, Y. P., 2016. Characteristics of Basement Strata in Bauxite Deposits of Guizhou Province and Their Relationships to Regional Mineralization. Geology and Exploration, 52(3): 462–471 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Yu.

Additional information

Acknowledgments

This study was supported by the Natural Science Foundation of China (Nos. U1812402, 41802116), Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUG170684, CUGQY1908). The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1081-8.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, G., Yu, W., Du, Y. et al. Provenance of Lower Carboniferous Bauxite Deposits in Northern Guizhou, China: Constraints from Geochemistry and Detrital Zircon U-Pb Ages. J. Earth Sci. 32, 235–252 (2021). https://doi.org/10.1007/s12583-020-1081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1081-8

Key Words

Navigation