Skip to main content
Log in

Rigidity of Reducibility of Finitely Differentiable Quasi-Periodic Cocycles on U(n)

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the reducibility problem of quasi-periodic cocycles \((\alpha ,A)\) on \({\mathbb {T}}^d\times U(n)\) in \(C^k\) class, with k large enough and \(\alpha \) being a Diophantine vector. We show that if \((\alpha ,A)\) is conjugated to a constant cocycle \((\alpha ,C)\) via \((\theta ,X)\mapsto (\theta , B(\theta )X)\), with a map \(B:{\mathbb {T}}^d\rightarrow U(n)\) being measurable, then it can be conjugated to \((\alpha ,C)\) in \(C^{k^{'}} (k^{'}<k)\) class for almost all C, provided that A is sufficiently close to constants. When \(d=1\), such a conclusion can even be extended to the global case: if \((\alpha ,A)\) is conjugated to a constant cocycle \((\alpha ,C)\) via measurable \(B:{\mathbb {T}}^d\rightarrow U(n)\), it can be conjugated to \((\alpha ,C)\) in \(C^{k^{'}} (k^{'}<k)\) class, for almost all \(\alpha \) and C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In fact, the original result in [12] is about quasi-periodic linear systems and the proof for cocycles is similar and is given in [5].

  2. For a matrix C, spec(C) denotes the set of its eigenvalues.

  3. The Gauss map \(G:[0,1)\rightarrow [0,1)\) is defined as \(G(0)=0\) and G(x) is the fractional part of 1/x for \(x\in (0,1)\). Here we identify \({\mathbb {T}}\) with [0, 1).

References

  1. Avila, A., Krikorian, R.: Reducibility or non-uniform hyperbolicity for quasiperiodic Schrodinger cocycles. Ann. Math. 164, 911–940 (2006)

    Article  MathSciNet  Google Scholar 

  2. Avila, A.: Almost reducibility and absolute continuity I. arXiv:1006.0704 (2010)

  3. Avila, A.: Global theory of one-frequency Schrodinger operators I: stratied analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity. Acta Math. 215, 1–54 (2015)

    Article  MathSciNet  Google Scholar 

  4. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \(SL(2,{\mathbb{R}})\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ben Hadj Amor, S.: Hölder continuity of the rotation number for quasi-periodic co-cycles in \(SL(2,{\mathbb{R}})\). Commun. Math. Phys. 287, 565–588 (2009)

    Article  Google Scholar 

  6. Fayad, B., Krikorian, R.: Rigidity results for quasiperiodic \(SL(2,{\mathbb{R}})\) cocycles. J. Mod. Dyn. 3, 479–510 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chavaudret, C.: Reducibility of quasi-periodic cocycles in Linear Lie groups. Ergod. Theory Dyn. Syst. 3, 741–769 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chavaudret, C.: Almost reducibility for finitely differentiable \(SL(2,{\mathbb{R}})\)-valued quasi-periodic cocycles. Nonlinearity 25, 481–494 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chavaudret, C.: Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles. Bull. Soc. Math. France 141, 47–106 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cai, A., Chavaudret, C., You, J., Zhou, Q.: Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles. Math. Z. 291, 931–958 (2018)

  11. Dinaburg, E., Sinai, Y.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl. 9, 279–289 (1975)

    Article  Google Scholar 

  12. Eliasson, H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)

    Article  Google Scholar 

  13. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dyn. Differ. Equ. 20, 831–866 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hou, X., You, J.: The rigidity of reducibility of cocycles on \(SO(N; {\mathbb{R}})\). Nonlinearity 21, 2317–2330 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hou, X., You, J.: Local rigidity of reducibility of analytic quasi-periodic cocycles on \(U(n)\). Discrete Contin. Dyn. Syst. 24, 3125–3152 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190, 209–260 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hou, X., Jiao, L.: On local rigidity of reducibility of analytic quasi-periodic cocycles on \(U(n)\). Discrete Contin. Dyn. Syst. 36, 3125–3152 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hou, X., Popov, G.: Rigidity of the reducibility of Gevrey quasi-periodic cocycles on \(U(n)\). Bull. SMF 144, 1–52 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Krikorian, R.: Réductibilité presque partout des systèmes quasi périodiques analytiques dans le cas \(SO(3)\). C. R. Acad. Sci. Paris Ser. I Math. 321, 103 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Krikorian, R.: Réductibilité presque partout des fots fibrés quasi-périodiques à valeurs dansles groupes compacts. Ann. Sci. École. Norm. Super. 32, 187–240 (1999)

    Article  MathSciNet  Google Scholar 

  21. Krikorian, R.: Réductibilité des systèmes produits-croisés à valeurs das des groupes com-pacts. Astérisque 259, vi\(+\)216 (1999)

  22. Krikorian, R.: Global density of reducible quasi-periodic cocycles on \({\mathbb{T}}^1\times SU(2)\). Ann. Math. 154, 269–326 (2001)

    Article  MathSciNet  Google Scholar 

  23. Krikorian, R.: Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on \({\mathbb{T}}\times SL(2,{\mathbb{R}})\). arXiv:math/0402333 (2004)

  24. Karaliolios, N.: Differentiable rigidity for quasiperiodic cocycles in compact Lie groups. J. Mod. Dyn. 11, 125–142 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems: I. Commun. Pure Appl. Math. XXVIII, 91–140 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

XH was partially supported by NNSF of China (Grant 11371019, 11671395, 12071083), Self-Determined Research Funds of Central China Normal University (CCNU19QN078), and Funds for Distinguished Youths of Hubei Province of China (2019CFA080).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Hou, X. & Li, J. Rigidity of Reducibility of Finitely Differentiable Quasi-Periodic Cocycles on U(n). J Dyn Diff Equat 34, 2549–2577 (2022). https://doi.org/10.1007/s10884-021-09964-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09964-6

Keywords

Navigation