Skip to main content
Log in

Facile Electro-Assisted Green Synthesis of Size-Tunable Silver Nanoparticles and Its Photodegradation Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An eco-benign procedure was developed to synthesize ultrafine and discrete spherical shape silver nanoparticles (5–20 nm) in the presence of ionic liquid. Different types of leaves extract, including Cymbopogon nardus, Polygonum minus, Allium Cepa, and Petroselinum crispum, were used as a green reducing and capping agents for the synthesis process. The Ag nanoparticles were denoted as AgCN, AgPM, AgAC, and AgPC, respectively. Notably, it was demonstrated that the Ag nanoparticles' size could simply be altered by varying the amount of total phenolic content (TPC) using different leaves. It was indicated from the characterization results that the AgPC nanoparticles’ size was nine-fold smaller compared to the conventional Ag nanoparticles due to the high amount of total phenolic compounds (TPC) in the Petroselinum crispum. The results also revealed that ionic liquid and phenolic compounds had a synergistic effect on reducing silver ions (Ag+) into silver nanoparticles (Ag) and the stabilization of the nanoparticles. The order obtained for the degradation of methylene blue (MB) was AgPC > AgPM > AgCN > AgAC > Ag was influenced by a large amount of TPC and led to a decrease in particle size and enhanced photocatalytic activity. The AgPC remained effective and stable even after five subsequent cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Ganapathy Selvam and K. Sivakumar (2015). Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci. 5, 617–622. https://doi.org/10.1007/s13204-014-0356-8.

    Article  CAS  Google Scholar 

  2. I. Khan, K. Saeed, and I. Khan (2019). Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  3. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Singaravelan and S. Bangaru Sudarsan Alwar (2015). Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci. 5, 983–991. https://doi.org/10.1007/s13204-014-0396-0.

    Article  CAS  Google Scholar 

  5. L. M. Carrillo-López, R. M. Soto-Hernández, H. A. Zavaleta-Mancera, and A. R. Vilchis-Néstor (2016). Study of the performance of the organic extracts of Chenopodium ambrosioides for Ag nanoparticle synthesis. J. Nanomater. 2016, 4714162. https://doi.org/10.1155/2016/4714162.

    Article  CAS  Google Scholar 

  6. M. M. Khan, N. H. Saadah, M. E. Khan, M. H. Harunsani, A. L. Tan, and M. H. Cho (2019). Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater. Sci. Semicond. Process. 91, 194–200. https://doi.org/10.1016/j.mssp.2018.11.030.

    Article  CAS  Google Scholar 

  7. H. Passos and M. Freire (2014). Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem. 46, 4786–4815. https://doi.org/10.1039/C4GC00236A.

    Article  CAS  Google Scholar 

  8. M. Smiglak, J. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D. MacFarlane, and R. Rogers (2014). Ionic liquids for energy, materials, and medicine. Chem Commun (Camb). https://doi.org/10.1039/c4cc02021a.

    Article  Google Scholar 

  9. G. Park, J. Park, Y. Cho, and C. Lee (2016). Palladium nanoparticles synthesized by pulsed electrolysis in room temperature ionic liquid. Int. J. Electrochem. Sci. 11, 4539–4549.

    Article  CAS  Google Scholar 

  10. E. Husanu, C. Chiappe, A. Bernardini, V. Cappello, and M. Gemmi (2018). Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents. Colloids Surf. A 538, 506–512. https://doi.org/10.1016/j.colsurfa.2017.11.033.

    Article  CAS  Google Scholar 

  11. C. M. Corrêa, M. A. Bizeto, and F. F. Camilo (2016). Direct synthesis of silver nanoparticles in ionic liquid. J. Nanoparticle Res. 18, 132. https://doi.org/10.1007/s11051-016-3436-8.

    Article  CAS  Google Scholar 

  12. N. Syahirah Kamarudin, R. Jusoh, H. DinaSetiabudi, and N. FatehaSukor (2018). Photodegradation of methylene blue using phyto-mediated synthesis of silver nanoparticles: effect of calcination treatment. Mater. Today Proc. 5, 21981–21989. https://doi.org/10.1016/j.matpr.2018.07.059.

    Article  CAS  Google Scholar 

  13. R. Jusoh, A. Abdul Jalil, S. Triwahyono, and N. H. Kamarudin (2015). Synthesis of dual type Fe species supported mesostructured silica nanoparticles: synergistical effects in photocatalytic activity. RSC Adv. https://doi.org/10.1039/C4RA13837F.

    Article  Google Scholar 

  14. R. Jusoh, A. Abdul Jalil, S. Triwahyono, A. Idris, and N. Mohd Yusof (2015). Photodegradation of 2-chlorophenol over colloidal α-FeOOH supported mesostructured silica nanoparticles: influence of a pore expander and reaction optimization. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2015.05.017.

    Article  Google Scholar 

  15. S. Fattahi, E. Zabihi, Z. Abedian, R. Pourbagher, A. Motevalizadeh Ardekani, A. Mostafazadeh, and H. Akhavan-Niaki (2014). Total phenolic and flavonoid contents of aqueous extract of stinging Nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines. Int. J. Mol. Cell. Med. 3, 102–107.

    PubMed  PubMed Central  Google Scholar 

  16. A. Zuorro, A. Iannone, S. Natali, and R. Lavecchia (2019). Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes. 7, 193. https://doi.org/10.3390/pr7040193.

    Article  CAS  Google Scholar 

  17. S. P. Goutam, G. Saxena, V. Singh, A. K. Yadav, R. N. Bharagava, and K. B. Thapa (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029.

    Article  CAS  Google Scholar 

  18. S. Y. Lee, S. Krishnamurthy, C.-W. Cho, and Y.-S. Yun (2016). Biosynthesis of gold nanoparticles using ocimum sanctum extracts by solvents with different polarity. ACS Sustain. Chem. Eng. 4, 2651–2659. https://doi.org/10.1021/acssuschemeng.6b00161.

    Article  CAS  Google Scholar 

  19. R. Jusoh, A. A. Jalil, S. Triwahyono, A. Idris, S. Haron, N. Sapawe, N. F. Jaafar, and N. W. C. Jusoh (2014). Synthesis of reverse micelle α-FeOOH nanoparticles in ionic liquid as an only electrolyte: inhibition of electron–hole pair recombination for efficient photoactivity. Appl. Catal. A Gen. 469, 33–44. https://doi.org/10.1016/j.apcata.2013.09.046.

    Article  CAS  Google Scholar 

  20. M. Harshiny, C. N. Iswarya, and M. Matheswaran (2015). Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol. 286, 744–749. https://doi.org/10.1016/j.powtec.2015.09.021.

    Article  CAS  Google Scholar 

  21. G. Sharmila, S. Haries, M. Farzana Fathima, S. Geetha, N. Manoj Kumar, and C. Muthukumaran (2017). Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technol. 320 (2017), 22–26. https://doi.org/10.1016/j.powtec.2017.07.026.

    Article  CAS  Google Scholar 

  22. S. Firoozi, M. Jamzad, and M. Yari (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. J. Nanostruct. Chem. 6, 357–364. https://doi.org/10.1007/s40097-016-0207-0.

    Article  CAS  Google Scholar 

  23. T. N. J. I. Edison, Y. R. Lee, and M. G. Sethuraman (2016). Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A 161, 122–129. https://doi.org/10.1016/j.saa.2016.02.044.

    Article  CAS  Google Scholar 

  24. T. J. I. Edison and M. G. Sethuraman (2013). Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta A 104, 262–264. https://doi.org/10.1016/j.saa.2012.11.084.

    Article  CAS  Google Scholar 

  25. B. Khodadadi, M. Bordbar, and M. Nasrollahzadeh (2017). Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid Interface Sci. 493, 85–93. https://doi.org/10.1016/j.jcis.2017.01.012.

    Article  CAS  PubMed  Google Scholar 

  26. K. Varunkumar, R. Hussain, G. Hegde, and A. S. Ethiraj (2017). Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149–156. https://doi.org/10.1016/j.mssp.2017.04.009.

    Article  CAS  Google Scholar 

  27. M. Bordbar, N. Negahdar, and M. Nasrollahzadeh (2018). Melissa officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Sep. Purif. Technol. 191, 295–300. https://doi.org/10.1016/j.seppur.2017.09.044.

    Article  CAS  Google Scholar 

  28. F. Mujeeb, P. Bajpai, and N. Pathak (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Res. Int. 2014, 497606. https://doi.org/10.1155/2014/497606.

    Article  PubMed  PubMed Central  Google Scholar 

  29. N. K. R. Bogireddy, K. K. HoskoteAnand, and B. K. Mandal (2015). Gold nanoparticles: synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J. Mol. Liq. 211, 868–875. https://doi.org/10.1016/j.molliq.2015.07.027.

    Article  CAS  Google Scholar 

  30. H. Muthukumar and M. Matheswaran (2015). Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 3, 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722.

    Article  CAS  Google Scholar 

  31. M. Irfan, M. Moniruzzaman, T. Ahmad, P. Mandal, S. Bhattacharjee, and B. Abdullah (2017). Ionic liquid based extraction of flavonoids from Elaeis guineensis leaves and their applications for gold nanoparticles synthesis. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.05.151.

    Article  Google Scholar 

  32. P. Moteriya and S. Chanda (2017). Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol. 45, 1556–1567. https://doi.org/10.1080/21691401.2016.1261871.

    Article  CAS  PubMed  Google Scholar 

  33. E. Marlina, S. Goh, T. Wu, T. Tan, S. B. AbdHamid, and J. C. Juan (2015). Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana 44, 1011–1019.

    Article  Google Scholar 

  34. A. Zielińska-Jurek, M. Klein, and J. Hupka (2017). Enhanced visible light photocatalytic activity of Pt/I-TiO2 in a slurry system and supported on glass packing. Sep. Purif. Technol. 189, 246–252. https://doi.org/10.1016/j.seppur.2017.08.018.

    Article  CAS  Google Scholar 

  35. J. H. Lee, J. Hong, J. H. Kim, Y. S. Kang, and S. W. Kang (2012). Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chem. Commun. 48, 5298–5300. https://doi.org/10.1039/C2CC17535E.

    Article  CAS  Google Scholar 

  36. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A. Abdel Nazeer, M. Amin, and M. Madkour (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. https://doi.org/10.1038/s41598-018-25673-5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. N. F. Jaafar, A. A. Jalil, S. Triwahyono, J. Efendi, R. R. Mukti, R. Jusoh, N. W. C. Jusoh, A. H. Karim, N. F. M. Salleh, and V. Suendo (2015). Direct in situ activation of AgO nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Appl. Surf. Sci. 338, 75–84. https://doi.org/10.1016/j.apsusc.2015.02.106.

    Article  CAS  Google Scholar 

  38. G. Sujatha, S. Shanthakumar, and F. Chiampo (2020). UV light-irradiated photocatalytic degradation of coffee processing wastewater using TiO2 as a catalyst. Environments. 7, 47. https://doi.org/10.3390/environments7060047.

    Article  Google Scholar 

  39. R. Jiang, H.-Y. Zhu, J.-B. Li, F.-Q. Fu, J. Yao, S.-T. Jiang, and G.-M. Zeng (2016). Fabrication of novel magnetically separable BiOBr/CoFe2O4 microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach. Appl. Surf. Sci. 364, 604–612. https://doi.org/10.1016/j.apsusc.2015.12.200.

    Article  CAS  Google Scholar 

  40. N. Pugazhenthiran, S. Murugesan, P. Sathishkumar, and S. Anandan (2014). Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light. Chem. Eng. J. 241, 401–409. https://doi.org/10.1016/j.cej.2013.10.069.

    Article  CAS  Google Scholar 

  41. N. S. Kamarudin, R. Jusoh, A. A. Jalil, H. D. Setiabudi, and N. F. Sukor (2020). Synthesis of silver nanoparticles in green binary solvent for degradation of 2,4-D herbicide: optimization and kinetic studies. Chem. Eng. Res. Des. 159, 300–314. https://doi.org/10.1016/j.cherd.2020.03.025.

    Article  CAS  Google Scholar 

  42. L. Wang, F. Lu, Y. Liu, Y. Wu, and Z. Wu (2018). Photocatalytic degradation of organic dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium guajava L. leaves. J. Mol. Liq. 263, 187–192. https://doi.org/10.1016/j.molliq.2018.04.151.

    Article  CAS  Google Scholar 

  43. M. S. Samuel, S. Jose, E. Selvarajan, T. Mathimani, and A. Pugazhendhi (2020). Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. B 202, 111642. https://doi.org/10.1016/j.jphotobiol.2019.111642.

    Article  CAS  PubMed  Google Scholar 

  44. Z. U. H. Khan, N. S. Shah, J. Iqbal, A. U. Khan, M. Imran, S. M. Alshehri, N. Muhammad, M. Sayed, N. Ahmad, A. Kousar, M. Ashfaq, F. Howari, and K. Tahir (2020). Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. J. Mol. Liq. 319, 114114. https://doi.org/10.1016/j.molliq.2020.114114.

    Article  CAS  Google Scholar 

  45. N. S. Kamarudin, R. Jusoh, N. F. Sukor, A. A. Jalil, and H. D. Setiabudi (2020). Intensified photocatalytic degradation of 2,4-dicholorophenoxyacetic acid using size-controlled silver nanoparticles: effect of pre-synthesis extraction. Adv. Powder Technol. 31, 3381–3394. https://doi.org/10.1016/j.apt.2020.06.023.

    Article  CAS  Google Scholar 

  46. R. Karthik, M. Govindasamy, S.-M. Chen, Y.-H. Cheng, P. Muthukrishnan, S. Padmavathy, and A. Elangovan (2017). Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochem. Photobiol. B 170, 164–172. https://doi.org/10.1016/j.jphotobiol.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  47. S. Malini, S. Vignesh Kumar, R. Hariharan, A. Pon Bharathi, P. Renuka Devi, and E. Hemananthan (2020). Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Mater. Today Proc. 21, 828–832. https://doi.org/10.1016/j.matpr.2019.07.587.

    Article  CAS  Google Scholar 

  48. J. Singh, V. Kumar, S. Singh Jolly, K.-H. Kim, M. Rawat, D. Kukkar, and Y. F. Tsang (2019). Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J. Ind. Eng. Chem. 80, 247–257. https://doi.org/10.1016/j.jiec.2019.08.002.

    Article  CAS  Google Scholar 

  49. B. Kumar, K. S. Vizuete, V. Sharma, A. Debut, and L. Cumbal (2019). Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum. 160, 272–278. https://doi.org/10.1016/j.vacuum.2018.11.027.

    Article  CAS  Google Scholar 

  50. J. Mangalam, M. Kumar, M. Sharma, and M. Joshi (2019). High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment. Nano-Struct. Nano-Objects. 17, 58–66. https://doi.org/10.1016/j.nanoso.2018.11.003.

    Article  CAS  Google Scholar 

  51. S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, S. K. Kansal, and S. K. Mehta (2016). Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity. Chem. Eng. J. 288, 423–431. https://doi.org/10.1016/j.cej.2015.12.039.

    Article  CAS  Google Scholar 

  52. S. Talebi, N. Chaibakhsh, and Z. Moradi-Shoeili (2017). Application of nanoscale ZnS/TiO2 composite for optimized photocatalytic decolorization of a textile dye. J. Appl. Res. Technol. 15, 378–385. https://doi.org/10.1016/j.jart.2017.03.007.

    Article  Google Scholar 

  53. R. Begum, K. Naseem, E. Ahmed, A. Sharif, and Z. H. Farooqi (2016). Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf. A 511, 17–26. https://doi.org/10.1016/j.colsurfa.2016.09.076.

    Article  CAS  Google Scholar 

  54. R. Begum, J. Najeeb, G. Ahmad, W. Wu, A. Irfan, A. G. Al-sehemi, and Z. H. Farooqi (2018). Synthesis and characterization of poly(N-isopropylmethacrylamide-co-acrylic acid) microgels for in situ fabrication and stabilization of silver nanoparticles for catalytic reduction of o-nitroaniline in aqueous medium. React. Funct. Polym. 132, 89–97. https://doi.org/10.1016/j.reactfunctpolym.2018.09.004.

    Article  CAS  Google Scholar 

  55. M. Shirzad-Siboni, A. Jonidi-Jafari, M. Farzadkia, A. Esrafili, and M. Gholami (2017). Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: kinetics and reaction pathways. J. Environ. Manage. 186, 1–11. https://doi.org/10.1016/j.jenvman.2016.10.049.

    Article  CAS  PubMed  Google Scholar 

  56. G. M. S. ElShafei, A. M. Al-Sabagh, F. Z. Yehia, C. A. Philip, N. A. Moussa, G. Eshaq, and A. E. ElMetwally (2018). Metal oxychlorides as robust heterogeneous Fenton catalysts for the sonophotocatalytic degradation of 2-nitrophenol. Appl. Catal. B 224, 681–691. https://doi.org/10.1016/j.apcatb.2017.11.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A token of appreciation goes to the financial support by University Malaysia Pahang through the Internal University Grant (Grant No. RDU1903130) and Collaboration Research Grant (Grant No. RDU182302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jusoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarudin, N.S., Jusoh, R., Sukor, N.F. et al. Facile Electro-Assisted Green Synthesis of Size-Tunable Silver Nanoparticles and Its Photodegradation Activity. J Clust Sci 33, 985–997 (2022). https://doi.org/10.1007/s10876-021-02028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02028-1

Keywords

Navigation