Skip to main content
Log in

Non-Contextual and Local Hidden-Variable Model for the Peres–Mermin and Greenberger–Horne–Zeilinger Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A hidden-variable model for quantum–mechanical spin, as represented by the Pauli spin operators, is proposed for systems illustrating the well-known no-hidden-variables arguments by Peres (Phys Lett A 151:107–108, 1990) and Mermin (Phys Rev Lett  65:3373–3376, 1990) and by Greenberger et al. (Bell’s theorem, quantum theory, and conceptions of the universe, Kluwer, Dordrecht, 1989). Both arguments rely on an assumption of non-contextuality; the latter argument can also be phrased as a non-locality argument, using a locality assumption. The model suggested here is compatible with both assumptions. This is possible because the scalar values of spin observables are replaced by vectors that are components of orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. See [10], chap.6.

  2. See [15] p. 365, [16] Sect. 4.5, [17] Sect. 3.3.

  3. See e.g. [22], p. 29.

  4. See [10] p. 121, [5] p. 3373.

  5. [5] p. 3375 (numbering of equations adapted).

  6. arXiv:1907.13073v2 (2019) (an extended version of this paper).

  7. See footnote 6, 3.1-3.2 for details of this interpretation.

  8. See footnote 6, Appendix A4 for details.

  9. See footnote 6, Appendix A3 for a proof.

  10. See the discussion in footnote 6, Appendix A4.

  11. See footnote 6, Appendix B.

  12. See again footnote 6, Appendix B.

  13. See footnote 6, Appendix C.

  14. See footnote 6, Appendix D.

References

  1. Bell, J.S.: On the impossible pilot wave. Found. Phys. 12, 989 (1982), quoted in [2], 166

  2. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)

    MathSciNet  MATH  Google Scholar 

  4. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Mermin, N.D.: Simple unified form of the major no-hidden variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)

    Chapter  Google Scholar 

  7. Dewdney, C., Holland, P.R., Kyprianidis, A.: What happens in a spin measurement? Phys. Lett. A 119, 259–267 (1986)

    Article  ADS  Google Scholar 

  8. Norsen, T.: The pilot-wave perspective on spin. Am. J. Phys. 82, 337–348 (2014)

    Article  ADS  Google Scholar 

  9. van Fraassen, B.C.: Semantic analysis of quantum logic. In: Hooker, C.A. (ed.) Contemporary Research in the Foundations and Philosophy of Quantum Theory, pp. 80–113. Reidel, Dordrecht (1973)

    Chapter  Google Scholar 

  10. Redhead, M.L.G.: Incompleteness, Nonlocality, and Realism. A Prolegomenon to the Philosophy of Quantum Mechanics, p. 135. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  11. Heywood, P., Redhead, M.L.G.: Non-locality and the Kochen-Specker paradox. Found. Phys. 13, 481–499 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Stairs, A.: Quantum logic, realism and value definiteness. Philos. Sci. 50, 578–602 (1983)

    Article  MathSciNet  Google Scholar 

  13. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195-200 (1964). Reprinted in [2], 14–21

  14. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Griffiths, R.B.: The new quantum logic. Found. Phys. 44, 610–640 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wallace, D.: Philosophy of quantum mechanics. In: Rickles, D. (ed.): The Ashgate Companion to Contemporary Philosophy of Physics, pp. 16–98. Ashgate Publishing, Aldershot (2008)

    Google Scholar 

  18. Griffiths, R.B.: Quantum measurements and contextuality. Phil. Trans. Roy. Soc. A 377, 2019033 (2019)

    Google Scholar 

  19. Griffiths, R.B.: Nonlocality claims are inconsistent with Hilbert space quantum mechanics. Phys Rev. A 101, 022117 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Garola, C., Sozzo, S.: Extended representations of observables and states for a noncontextual reinterpretation of QM. J. Phys. A 45, 075303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Garola, C.: A survey of the ESR model for an objective reinterpretation of quantum mechanics Int. J. Theor. Phys. 54, 4410–4422 (2015)

    Article  Google Scholar 

  22. Garola, C., Sozzo, S., Wu, J.: Outline of a generalization and a reinterpretation of quantum mechanics recovering objectivity, arXiv:1402.4394 (2015)

  23. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  24. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)

    Book  Google Scholar 

  25. Baylis, W.E.: Electrodynamics: A Modern Geometric Approach. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  26. Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  27. Macdonald. A.: A survey of geometric algebra and geometric calculus. Adv. Appl. Cliff. Alg. 27, 853–891 (2017), Sect.1.2.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Held.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Held, C. Non-Contextual and Local Hidden-Variable Model for the Peres–Mermin and Greenberger–Horne–Zeilinger Systems. Found Phys 51, 33 (2021). https://doi.org/10.1007/s10701-021-00409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00409-0

Keywords

Navigation