Skip to main content
Log in

Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present study, the grinding experiment of second-generation nickel-based single-crystal superalloy DD5 was carried out under different grinding parameters. The grinding force was recorded during the grinding process, and it was found that it decreased with increasing grinding speed and increased with feed speed. The microstructure evolution of ground subsurface was obtained by optical microscope (OM) and scanning electron microscope (SEM), and the elemental distribution of γ/γ' phases was investigated by energy dispersion spectrum (EDS). The results show that there are two layers different from the bulk material beneath the ground surface: (i) a white layer (WL) with no obvious structural features under limited observation scale and (ii) a severe deformed layer (SDL) with the elongated and rotated γ' phase and the narrowed γ channel. Elements segregation behavior exists in both the white layer and severe deformed layer. The grinding parameters have a great influence on the thickness of the white layer, which is due to the elemental diffusion behavior caused by intensive thermo-mechanical load. There is work hardening in the white layer, and the hardening degree aggravates with the increase in cutting speed and feed speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  1. Bewlay BP, Jackson MR, Subramanian PR, Lewandowski JJ. Very high-temperature Nb-silicide-based composites. Proc Int Symp Niobium High Temp Appl. 2004;34:51–61.

    Google Scholar 

  2. Li P, Gong Y, Xu Y, Qi Y, Sun Y, Zhang H. Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Arch Civ Mech Eng. 2019;19:820–31. https://doi.org/10.1016/j.acme.2019.03.002.

    Article  Google Scholar 

  3. Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. 1999;3:513–23.

    Google Scholar 

  4. Ding R, Knaggs C, Li H, Li YG, Bowen P. Characterization of plastic deformation induced by machining in a Ni-based superalloy. Mater Sci Eng A. 2020;778:139104. https://doi.org/10.1016/j.msea.2020.139104.

    Article  CAS  Google Scholar 

  5. Jin D, Liu Z. Effect of cutting speed on surface integrity and chip morphology in high-speed machining of PM nickel-based superalloy FGH95. Int J Adv Manuf Technol. 2012;60:893–9. https://doi.org/10.1007/s00170-011-3679-6.

    Article  Google Scholar 

  6. Imran M, Mativenga PT, Gholinia A, Withers PJ. Evaluation of surface integrity in micro drilling process for nickel-based superalloy. Int J Adv Manuf Technol. 2011;55:465–76. https://doi.org/10.1007/s00170-010-3062-z.

    Article  Google Scholar 

  7. Liao Z, Polyakov M, Diaz OG, Axinte D, Mohanty G, Maeder X, Michler J, Hardy M. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - Mechanical machining case. Acta Mater. 2019;180:2–14. https://doi.org/10.1016/j.actamat.2019.08.059.

    Article  ADS  CAS  Google Scholar 

  8. Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf. 2016;100:25–54. https://doi.org/10.1016/j.ijmachtools.2015.10.001.

    Article  Google Scholar 

  9. Du J, Liu Z, Lv S. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy. Appl Surf Sci. 2014;292:197–203. https://doi.org/10.1016/j.apsusc.2013.11.111.

    Article  ADS  CAS  Google Scholar 

  10. Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int J Mach Tools Manuf. 2011;51:250–80. https://doi.org/10.1016/j.ijmachtools.2010.11.003.

    Article  Google Scholar 

  11. Gong S, Sun Y, Jin L, Su Z. Experimental study on fabricating micro-holes in DD5 single-crystal nickel-based superalloy using electrical discharge drilling. Arch Civ Mech Eng. 2020;20:1–16. https://doi.org/10.1007/s43452-020-00089-z.

    Article  Google Scholar 

  12. Umbrello D, Filice L. Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. CIRP Ann Manuf Technol. 2009;58:73–6. https://doi.org/10.1016/j.cirp.2009.03.106.

    Article  Google Scholar 

  13. Soo SL, Hood R, Aspinwall DK, Voice WE, Sage C. Machinability and surface integrity of RR1000 nickel based superalloy. CIRP Ann Manuf Technol. 2011;60:89–92. https://doi.org/10.1016/j.cirp.2011.03.094.

    Article  Google Scholar 

  14. X Ping Ren, Z qiang Liu. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int J Miner Metall Mater. 25 (2018) 937–949. Doi: https://doi.org/10.1007/s12613-018-1643-2.

  15. Azim S, Gangopadhyay S, Mahapatra SS, Mittal RK, Singh A, Singh RK. Study of cutting forces and surface integrity in micro drilling of a Ni-based superalloy. J Manuf Process. 2019;45:368–78. https://doi.org/10.1016/j.jmapro.2019.07.016.

    Article  Google Scholar 

  16. Hashimoto F, Guo YB, Warren AW. Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann - Manuf Technol. 2006;55:81–4. https://doi.org/10.1016/S0007-8506(07)60371-0.

    Article  Google Scholar 

  17. Guo YB, Schwach DW. An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. Int J Fatigue. 2005;27:1051–61. https://doi.org/10.1016/j.ijfatigue.2005.03.002.

    Article  CAS  Google Scholar 

  18. Schwach DW, Guo YB. A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue. 2006;28:1838–44. https://doi.org/10.1016/j.ijfatigue.2005.12.002.

    Article  CAS  Google Scholar 

  19. Herbert C, Axinte DA, Hardy M, Withers P. Influence of surface anomalies following hole making operations on the fatigue performance for a nickel-based superalloy. J Manuf Sci Eng Trans ASME. 2014;136:1–9. https://doi.org/10.1115/1.4027619.

    Article  Google Scholar 

  20. Herbert CRJ, Axinte DA, Hardy MC, Brown PD. Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Procedia Eng. 2011;19:138–43. https://doi.org/10.1016/j.proeng.2011.11.092.

    Article  CAS  Google Scholar 

  21. Chen Z, Colliander MH, Sundell G, Peng RL, Zhou J, Johansson S, Moverare J. Nano-scale characterization of white layer in broached Inconel 718. Mater Sci Eng A. 2017;684:373–84. https://doi.org/10.1016/j.msea.2016.12.045.

    Article  CAS  Google Scholar 

  22. Veldhuis SC, Dosbaeva GK, Elfizy A, Fox-Rabinovich GS, Wagg T. Investigations of white layer formation during machining of powder metallurgical Ni-based ME 16 superalloy. J Mater Eng Perform. 2010;19:1031–6. https://doi.org/10.1007/s11665-009-9567-7.

    Article  CAS  Google Scholar 

  23. Griffiths BJ. Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol. 1987;109:525–30. https://doi.org/10.1115/1.3261495.

    Article  Google Scholar 

  24. Bosheh SS, Mativenga PT. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. Int J Mach Tools Manuf. 2006;46:225–33. https://doi.org/10.1016/j.ijmachtools.2005.04.009.

    Article  Google Scholar 

  25. Österle W, Li PX. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A. 1997;238:357–66. https://doi.org/10.1016/S0921-5093(97)00457-7.

    Article  Google Scholar 

  26. Thakur A, Mohanty A, Gangopadhyay S. Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts. Appl Surf Sci. 2014;320:829–37. https://doi.org/10.1016/j.apsusc.2014.09.129.

    Article  ADS  CAS  Google Scholar 

  27. Thakur A, Gangopadhyay S, Maity KP. Effect of cutting speed and tool coating on machined surface integrity of ni-based super alloy. Procedia CIRP. 2014;14:541–5. https://doi.org/10.1016/j.procir.2014.03.045.

    Article  Google Scholar 

  28. Gong Y, Zhou Y, Wen X, Cheng J, Sun Y, Ma L. Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding. J Mech Sci Technol. 2017;31:3397–410. https://doi.org/10.1007/s12206-017-0629-8.

    Article  Google Scholar 

  29. Hegde SR, Kearsey RM, Beddoes JC. Designing homogenization-solution heat treatments for single crystal superalloys. Mater Sci Eng A. 2010;527:5528–38. https://doi.org/10.1016/j.msea.2010.05.019.

    Article  CAS  Google Scholar 

  30. Sugui T, Shu Z, Fushun L, Anan L, Jingjing L. Microstructure evolution and analysis of a single crystal nickel-based superalloy during compressive creep. Mater Sci Eng A. 2011;528:4988–93. https://doi.org/10.1016/j.msea.2011.03.035.

    Article  CAS  Google Scholar 

  31. Wang X, Zhou Y, Zhao Z, Zhang Z. The γ’ precipitate rafting and element distribution during hot isostatic pressing in a nickel-based superalloy. Mater Des. 2015;86:836–40. https://doi.org/10.1016/j.matdes.2015.07.136.

    Article  CAS  Google Scholar 

  32. Zhang HP, Zhang QY, Ren Y, Shay T, Liu GL. Simulation and experiments on cutting forces and cutting temperature in high speed milling of 300m steel under cmql and dry conditions. Int J Precis Eng Manuf. 2018;19:1245–51. https://doi.org/10.1007/s12541-018-0147-3.

    Article  Google Scholar 

  33. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, S. Yue, Mechanical property and microstructure of linear friction welded WASPALOY, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 729–744. https://doi.org/https://doi.org/10.1007/s11661-010-0457-2.

  34. Preuss M, Withers PJ, Baxter GJ. A comparison of inertia friction welds in three nickel base superalloys. Mater Sci Eng A. 2006;437:38–45. https://doi.org/10.1016/j.msea.2006.04.058.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 51775100) and the Fundamental Research Funds for the Central Universities (No.N2003004) and (No.N2003024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Gong.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Gong, Y., Wang, Z. et al. Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface. Archiv.Civ.Mech.Eng 21, 43 (2021). https://doi.org/10.1007/s43452-021-00203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00203-9

Keywords

Navigation