Skip to main content
Log in

Periodic cycles of attracting Fatou components of type \({\mathbb {C}}\times ({\mathbb {C}}^{*})^{d-1}\) in automorphisms of \({\mathbb {C}}^{d}\)

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We generalise a recent example by F. Bracci, J. Raissy and B. Stensønes to construct automorphisms of \({\mathbb {C}}^{d}\) admitting an arbitrary finite number of non-recurrent Fatou components, each biholomorphic to \({\mathbb {C}}\times ({\mathbb {C}}^{*})^{d-1}\) and all attracting to a common boundary fixed point. These automorphisms can be chosen such that each Fatou component is invariant or such that the components are grouped into periodic cycles of any common period. We further show that no orbit in these attracting Fatou components can converge tangent to a complex submanifold, and that every stable orbit near the fixed point is contained either in these attracting components or in one of d invariant hypersurfaces tangent to each coordinate hyperplane on which the automorphism acts as an irrational rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brjuno, A.D.: Analytical form of differential equations. Trans. Mosc. Math. Soc. 25, 131–288 (1973)

    Google Scholar 

  2. Bracci, F., Zaitsev, D.: Dynamics of one-resonant biholomorphisms. J. Eur. Math. Soc. 15(1), 179–200 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bracci, F., Raissy, J., Zaitsev, D.: Dynamics of multi-resonant biholomorphisms. Int. Math. Res. Not. 2013(20), 4772–4797 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bracci, F., Raissy, J., Stensønes, B.: Automorphisms of \({\mathbb{C}}^k\) with an invariant non-recurrent attracting Fatou component biholomorphic to \({\mathbb{C}}\times ({\mathbb{C}}^*)^{k-1}\). J. Eur. Math. Soc. 23(2), 639–666 (2020). https://doi.org/10.4171/jems/1019

  5. Forstnerič, F.: Interpolation by holomorphic automorphisms and embeddings in \({{\mathbb{C}}}^n\). J. Geom. Anal. 9(1), 93–117 (1999)

    Article  MathSciNet  Google Scholar 

  6. Lyubich, M., Peters, H.: Classification of invariant Fatou components for dissipative Hénon maps. Geom. Funct. Anal. 24(3), 887–915 (2014)

    Article  MathSciNet  Google Scholar 

  7. Peters, H., Vivas, L.R., Wold, E.F.: Attracting basins of volume preserving automorphisms of \({\mathbb{C}}^k\). Int. J. Math. 19(7), 801–810 (2008)

    Article  Google Scholar 

  8. Pöschel, J.: On invariant manifolds of complex analytic mappings near fixed points. Expos. Math. 4(2), 97–109 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Raissy, J.: Brjuno conditions for linearization in presence of resonances. Asymptotics in Dynamics, Geometry and PDEs. Generalized Borel Summation. Vol. I. Proceedings of the Conference, CRM, Pisa, Italy, October 12–16, 2009. Edizioni della Normale, Pisa, pp. 201–218 (2011)

  10. Reppekus, J.: Punctured non-recurrent Siegel cylinders in automorphisms of \({\mathbb{C}}^{2}\). Int. Math. Res. Not. (2020). https://doi.org/10.1093/imrn/rnaa217

  11. Rosay, J.-P., Rudin, W.: Holomorphic maps from \({ C}^n\) to \({ C}^n\). Trans. Am. Math. Soc. 310(1), 47–86 (1988)

    MATH  Google Scholar 

  12. Serre, J.-P.: Une propriété topologique des domaines de Runge. Proc. Am. Math. Soc. 6, 133–134 (1955)

    MATH  Google Scholar 

  13. Siegel, C.L.: Iteration of analytic functions. Ann. Math. (2) 43, 607–612 (1942)

    Article  MathSciNet  Google Scholar 

  14. Sternberg, S.: Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech. 10, 451–474 (1961)

    MathSciNet  MATH  Google Scholar 

  15. Ueda, T.: Local structure of analytic transformations of two complex variables I. J. Math. Kyoto Univ. 26(2), 233–261 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Weickert, B.J.: Attracting basins for automorphisms of \({ C}^2\). Invent. Math. 132(3), 581–605 (1998)

    Article  MathSciNet  Google Scholar 

  17. Zehnder, E.: Lectures on Dynamical Systems. Hamiltonian Vector Fields and Symplectic Capacities. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josias Reppekus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reppekus, J. Periodic cycles of attracting Fatou components of type \({\mathbb {C}}\times ({\mathbb {C}}^{*})^{d-1}\) in automorphisms of \({\mathbb {C}}^{d}\). Annali di Matematica 200, 1813–1840 (2021). https://doi.org/10.1007/s10231-020-01061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01061-7

Keywords

Mathematics Subject Classification

Navigation