Skip to main content

Advertisement

Log in

Morphological, productive, and nutritional characterization of Desmanthus spp. accessions under different cutting intensities

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Rangeland legume species from the Brazilian Caatinga play a key role as feed resources for livestock and are an alternative in the agroforestry systems. This study evaluated the effect of two cutting intensities (40 and 80 cm) on morphological, productive, and qualitative characteristics of four (5G, 6G, 7G, and AS) accessions of Desmanthus spp. The experiment was established considering a completely randomized design with subdivided plots and six replicates at the Sugarcane Experimental Station, Carpina/UFRPE. Every 70 days, the variables fruiting, pod production, number of leaves, number of branches, leaves per branch, leaves per plant, and branch diameter were evaluated. The leaf/branch ratio, dry matter yield (DMY), chemical composition, and in vitro dry matter digestibility (IVDMD) were determined. There was no interaction (p ≥ 0.05) between the cutting intensities and evalutaed accessions for the morphological and nutritional variables. The effect of accessions on stem diameter, number of leaves per branch and per plant, leaf/branch ratio, and IVDMD was significant. The AS accession had the greatest values of plant DMY and branch DMY (1.85 and 1.27 ton DM ha−1), respectively, under the harvest intensity of 40 cm. The 7G accession, however, had greatest DMY when harvested at 80 cm, producing 1.52 and 1.00 ton DM ha−1 for total DMY and branch DMY, respectively. The Desmanthus spp. accessions evaluated in this study varied in their morphological, productive, and nutritional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC (2016) Official methods of analysis of aoac international. AOAC INTERNATIONAL, Rockville

    Google Scholar 

  • Brahim NB, Salhi A, Chtourou N, Combes D, Marrakchi M (2002) Isozymic polymorphism and phylogeny of 10 lathyrus species. Genet Resour Crop Ev 49:427–436. https://doi.org/10.1023/A:1020629829179

    Article  Google Scholar 

  • Calado TB, Cunha MV, Teixeira VI, Santos MVFD, Cavalcanti HS, Lira CC (2016) Morphology and Productivity of “Jureminha” Genotypes (Desmanthus spp.) Under Different Cutting Intensities. Rev Caatinga 29:742–752. https://doi.org/10.1590/1983-21252016v29n326rc

    Article  Google Scholar 

  • Cediel-Devia D, Sandoval-Lozano E, Castañeda-Serrano R (2019) Effects of different regrowth ages and cutting heights on biomass production, bromatological composition and in vitro digestibility of Guazuma ulmifolia foliage. Agrofor Syst 94:199–1208. https://doi.org/10.1007/s10457-019-00354-y

    Article  Google Scholar 

  • Cook BG, Schultze-Kraft R (2020) Clearing confusion in Stylosanthes taxonomy: 1. S. seabrana B.L. Maass & 't Mannetje Aclarando confusiones en la taxonomía de Stylosanthes: S. seabrana B.L. Maass & 't Mannetje. Trop Grassl-Forrajes 8:40–47. https://doi.org/10.17138/tgft(8)40-47

  • Costa JC, Fracetto GGM, Fracetto FJC, Santos MVF, Lira Júnior MA (2017) Genetic diversity of Desmanthus sp. accessions using ISSR markers and morphological traits. Genet Mol Res 16:1–9. https://doi.org/10.4238/gmr160398666

    Article  Google Scholar 

  • Costa RNN, Lange A, Caione G, Schoninger EL (2012) Produção de forragem para ovinos utilizando o consórcio de gramíneas com leguminosas sob pastejo rotacionado. Rev Cien Agro-Amb 10:99–109

    Google Scholar 

  • Cruz SESBS, Beelen PMG, Silva DS, Pereira WE, Beelen R, Beltrão ES (2007) Caracterização dos taninos condensados das espécies maniçoba (Manihot pseudoglazovii), flor de seda (Calotropis procera), feijão bravo (Capparis flexuosa, L) e jureminha (Desmanthus virgatus). Arq Bras Med Vet Zootec 59:1038–1044. https://doi.org/10.1590/S0102-09352007000400033

    Article  Google Scholar 

  • Fontenele ACF, Aragão WM, Rangel JHA, Almeida AS (2009) Leguminosas tropicais: Desmanthus virgatus (L.) Wild Uma forrageira promissora. Rev Bras Agroc 15:121–123. https://doi.org/10.18539/cast.v15i1-4.1998

  • Gardiner CP, Bielig A, Schlink R, Coventry WM (2004) Desmanthus- a new pasture legume for the dry tropics. Fourth International Crop Science Congress, Brisbane

    Google Scholar 

  • Holden LA (1999) Comparison of methods of in vitro dry matter digestibility for ten feeds. J Dairy Sci 82:1791–1794. https://doi.org/10.3168/jds.S0022-0302(99)75409-3

    Article  CAS  PubMed  Google Scholar 

  • Julier B, Huguet T, Chardon F, Chardon RA, Pierre JB, Prospero JM, Barre P, Huyghe C (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114:1391–1406. https://doi.org/10.1007/s00122-007-0525-1

    Article  PubMed  Google Scholar 

  • Kavita SR, Kumar V, Sridhar K, Vyakarnahal BS, Chanappagoudar BC (2015) Effect of physical and chemical treatments on seed dormancy and storability of hedge lucerne [Desmanthus virgatus (L.) Willd.]. Legume Res 38:131–136. https://doi.org/10.5958/0976-0571.2015.00022.3

    Article  Google Scholar 

  • Kuchenmeister K, Kuchenmeister F, Kayser M, Wrage MN, Isselstein J (2013) Influence of drought stress on nutritive value of perennial forage legumes. Int J Plant Prod 7:693–710

    Google Scholar 

  • Martuscello JA, Braz TGS, Silveira JM, Simeão RM, Ferreira MR, Noronha D, Cunha FV (2015) Diversidade genética em acessos de Stylosanthes capitata. Bol Ind Anim 72: 284–289. https://doi.org/10.17523/bia.v72n4p284

  • Medeiros AS, Teixeira VI, Cavalcanti Filho LFM, Oliveira EN, Silva SLF, Santos MVF (2020) Biomass production and chemical bromatological composition of jureminha submitted to increasing saline levels. Arch Zootec 69:54–64

    Article  Google Scholar 

  • Muir JP, Santos MVF, Cunha MV, Dubeux Júnior JCB, Lira Júnior MA, Souza RTA, Souza TC (2019) Value of endemic legumes for livestock production on Caatinga rangelands. Rev Bras Cien Agr 14:1–12. https://doi.org/10.5039/agraria.v14i2a5648

    Article  Google Scholar 

  • NRC (National Research Council) (2001) Nutrient of requirements of dairy cattle. National Academy Press, Washington, DC

    Google Scholar 

  • Paciullo DSC, Pires MFA, Aroeira LJM, Morenz MJF, Maurício RM, Gomide CAM, Silveira SR (2014) Sward characteristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 8:1264–1271. https://doi.org/10.1017/S1751731114000767

    Article  CAS  PubMed  Google Scholar 

  • Paciullo DSC, Pires MFA, Muller MD (2017) Opportunities and challenges of intergrated systems in animal production: emphasis on silvopastoral systems. Arch Latinoam Prod Anim 25:1–2

    Google Scholar 

  • Queiroz IV (2016) Variabilidade genética e caracterização morfológica, produtiva e qualitativa de acessos de Desmanthus spp. Universidade Federal Rural de Pernambuco, Brasil, Thesis

    Google Scholar 

  • Queiroz IV (2012) Ocorrência e germinação de sementes de Desmanthus sp. coletadas no semiárido Pernambucano. Dissertação, Universidade Federal Rural de Pernambuco, Brasil.

  • Rangel JHA, Gardiner CP (2009) Stimulation of wool growth by Desmanthus spp. as a supplement to a diet of Mitchell grass hay. Trop Grass 43:106–111

    Google Scholar 

  • Santos GRA, Batista AMV, Guim A, Santos MVF, Silva MJA, Pereira VLA (2008) Determinação da composição botânica da dieta de ovinos em pastejo na Caatinga. Rev Bras Zootec 37:1876–1883. https://doi.org/10.1590/S1516-35982008001000023

    Article  Google Scholar 

  • Santos MVF, Cunha MV, Dubeux Junior JCB, Ferreira RLC, Lira Junior MA, Oliveira OF (2019) Native shrub-tree legumes of tropical America with potential for domestication. Legume Persp 17:1–58

    Google Scholar 

  • Santos MVF, Lira MA, Dubeux Júnior JCB, Guim A, Mello ACL, Cunha MV (2010) Potential of Caatinga forage plants in ruminant feeding. Rev Bras Zootec 39:204–215. https://doi.org/10.1590/S1516-35982010001300023

    Article  Google Scholar 

  • Silva VJ, Dubeux Júnior JCB, Teixeira VI, Santos MVF, Lira MA, Mello ACL (2010) Características morfológicas e produtivas de leguminosas forrageiras tropicais submetidas a duas frequências de corte. Rev Bras Zootec 39:97–102. https://doi.org/10.1590/S1516-35982010000100013

    Article  Google Scholar 

  • Silva MSJ, Jobim CC, Nascimento WG, Ferreira GDG, Silva SS, Três TT (2013) Estimativa de produção e valor nutritivo do feno de estilosantes cv. Campo Grande Semin-Cienc Agrar 34:1363–1380. https://doi.org/10.5433/1679-0359.2013v34n3p1363

    Article  CAS  Google Scholar 

  • Simbaya J, Chibinga O, Salem AZM (2020) Nutritional assessment of selected forages: Mulberry (Molus alba Lam.), Leucaena (Leucaena luecocephala Lam de Wit.) and Moringa (Moringa oleifera Lam.) as dry season protein supplements for grazing animals. Agroforest Syst 94:1189–1197. https://doi.org/10.1007/s10457-020-00504-7

    Article  Google Scholar 

  • Van Soest PJ (1973) Collaborative study of acid-detergent fiber and lignin. J AOAC 56:781–784

    Article  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca, p 476

    Book  Google Scholar 

  • Sonawane AS, Deshpande KY, Rathod SB, Shelke PR, Nikam MG, Gholve AU (2019) Effect of feeding Hedge lucerne (Desmanthus virgatus) on intake, growth performance and body condition score in growing Osmanabadi goats. Ind J Ani Sci 89:881–884

    CAS  Google Scholar 

  • Souza RTA, Silva DKA, Santos MVF, Naumann HD, Magalhães ALR, Andrade AP (2020) Association of edaphoclimatic characteristics and variability of condensed tannin content in species from Caatinga. Rev Cienc Agron 51:1–7. https://doi.org/10.5935/1806-6690.20200042

    Article  Google Scholar 

  • Sukkasame P, Phaikaew C (2011) Utilization of Desmanthus virgatus as protein supplement for fattening cattle in southern Thailand. Integrated Crop-Livestock production systems and fodder trees.

  • Vandermeulen S, Singh S, Ramírez-Restrepo CA, Kinley RD, Gardiner CP, Holtum JA, Bindelle J (2018) In vitro assessment of ruminal fermentation, digestibility and methane production of three species of Desmanthus for application in northern Australian grazing systems. Crop Past Sci 69:797–807. https://doi.org/10.1071/CP17279

    Article  CAS  Google Scholar 

  • Verdecia DM, Herrera RS, Ramírez JL, Leonard I, Bodas R, Andrés S, Giraldez F, Valdes C, Arceo Y, Paumier M, Santana A, Alvarez YA, Mendez Y, Lopez S (2020) Effect of age of regrowth, chemical composition and secondary metabolites on the digestibility of Leucaena leucocephala in the Cauto Valley. Cuba Agrofor Syst 94:1247–1253. https://doi.org/10.1007/s10457-018-0339-y

    Article  Google Scholar 

  • Zi X, Li M, Zhou H, Tang J, Cai Y (2017) Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem y Asian-Australasian. J Anim Sci 30:1718–1723. https://doi.org/10.5713/ajas.17.0077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Council for Scientific and Technological Development—CNPq, for the financial support received. The Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), for the master's scholarship. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, W.P.S., Santos, M.V.F., Verás, A.S.C. et al. Morphological, productive, and nutritional characterization of Desmanthus spp. accessions under different cutting intensities. Agroforest Syst 95, 571–581 (2021). https://doi.org/10.1007/s10457-021-00609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00609-7

Keywords

Navigation