Skip to main content
Log in

Two-Step Pretreatment of Hydrothermal with Ammonia for Cow Bedding: Pretreatment Characteristics, Anaerobic Digestion Performance and Kinetic Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cow bedding is one of the dominant livestock wastes among agricultural waste in China. The bedding is a good raw material for anaerobic digestion (AD) and produces biogas of sustainable energy. To improve the AD performance of bedding, a two-step pretreatment of hydrothermal with ammonia (TPHA) was used at 100, 150, and 200 °C holding for 5–30 min. The results revealed that the highest volatile fatty acids concentration was 4720.1 mg/L at a TPHA of 200 °C for 5 min. The highest removal rates of cellulose and hemicellulose were 35.4% and 97.4% at a hydrothermal pretreatment (HP) of 100 °C for 30 min and 200 °C for 10 min, respectively. The highest methane yield of cow bedding was 169.1 mL/g VS using the TPHA at 150 °C for 10 min, which was 54.5% higher than that of the untreated group. Kinetic analysis showed that the modified Gompertz model was more suitable for TPHA for cow bedding. Therefore, TPHA could improve pretreatment characteristics and enhance the methane yield of cow bedding.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Böske, J., Wirth, B., Garlipp, F., Mumme, J., Van den Weghe, H.: Anaerobic digestion of horse dung mixed with different bedding materials in an upflow solid-state (UASS) reactor at mesophilic conditions. Bioresour. Technol. 158, 111–118 (2014). https://doi.org/10.1016/j.biortech.2014.02.034

    Article  Google Scholar 

  2. Wartell, B.A., Krumins, V., Alt, J., Kang, K., Schwab, B.J., Fennell, D.E.: Methane production from horse manure and stall waste with softwood bedding. Bioresour. Technol. 112, 42–50 (2012). https://doi.org/10.1016/j.biortech.2012.02.012

    Article  Google Scholar 

  3. Tait, S., Tamis, J., Edgerton, B., Batstone, D.J.: Anaerobic digestion of spent bedding from deep litter piggery housing. Bioresour. Technol. 100(7), 2210–2218 (2009). https://doi.org/10.1016/j.biortech.2008.10.032

    Article  Google Scholar 

  4. Riggio, S., Torrijos, M., Debord, R., Esposito, G., Van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manag. 59, 129–139 (2017). https://doi.org/10.1016/j.wasman.2016.10.027

    Article  Google Scholar 

  5. Passos, F., Ortega, V., Donoso-Bravo, A.: Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation. Bioresour. Technol. 227, 239 (2016). https://doi.org/10.1016/j.biortech.2016.12.034

    Article  Google Scholar 

  6. Song, K., Yeerken, S., Li, L., Sun, J., Wang, Q.: Improving post-anaerobic digestion of full-scale anaerobic digestate using free ammonia treatment. ACS Sustain. Chem. Eng. 7(7), 7171–7176 (2019). https://doi.org/10.1021/acssuschemeng.9b00152

    Article  Google Scholar 

  7. Fang, C., Huang, R., Dykstra, C.M., Jiang, R., Pavlostathis, S.G., Tang, Y.: Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment. Environ. Sci. Technol. 54(2), 1147–1156 (2020). https://doi.org/10.1021/acs.est.9b03269

    Article  Google Scholar 

  8. Ahmad, F., Silva, E.L., Varesche, M.B.A.: Hydrothermal processing of biomass for anaerobic digestion—a review. Renew. Sustain. Energy Rev. 98, 108–124 (2018). https://doi.org/10.1016/j.rser.2018.09.008

    Article  Google Scholar 

  9. Hashemi, S.S., Karimi, K., Mirmohamadsadeghi, S.: Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 172, 545–554 (2019). https://doi.org/10.1016/j.energy.2019.01.149

    Article  Google Scholar 

  10. Phuttaro, C., Sawatdeenarunat, C., Surendra, K.C., Boonsawang, P., Chaiprapat, S., Khanal, S.K.: Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour. Technol. 284, 128–138 (2019). https://doi.org/10.1016/j.biortech.2019.03.114

    Article  Google Scholar 

  11. Ran, G., Li, D., Zheng, T., Liu, X., Chen, L., Cao, Q., Yan, Z.: Hydrothermal pretreatment on the anaerobic digestion of washed vinegar residue. Bioresour. Technol. 248, 265–271 (2018). https://doi.org/10.1016/j.biortech.2017.06.068

    Article  Google Scholar 

  12. Zieminski, K., Romanowska, I., Kowalska-Wentel, M., Cyran, M.: Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour. Technol. 166, 187–193 (2014). https://doi.org/10.1016/j.biortech.2014.05.021

    Article  Google Scholar 

  13. He, L., Huang, H., Zhang, Z., Lei, Z., Lin, B.-L.: Energy recovery from rice straw through hydrothermal pretreatment and subsequent biomethane production. Energy Fuels 31(10), 10850–10857 (2017). https://doi.org/10.1021/acs.energyfuels.7b01392

    Article  Google Scholar 

  14. Ruiz, H.A., Conrad, M., Sun, S.N., Sanchez, A., Rocha, G.J.M., Romani, A., Castro, E., Torres, A., Rodriguez-Jasso, R.M., Andrade, L.P., Smirnova, I., Sun, R.C., Meyer, A.S.: Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 299, 122685 (2020). https://doi.org/10.1016/j.biortech.2019.122685

    Article  Google Scholar 

  15. Perendeci, N.A., Ciggin, A.S., Kökdemir Ünşar, E., Orhon, D.: Optimization of alkaline hydrothermal pretreatment of biological sludge for enhanced methane generation under anaerobic conditions. Waste Manag. 107, 9–19 (2020). https://doi.org/10.1016/j.wasman.2020.03.033

    Article  Google Scholar 

  16. Xue, Y., Li, Q., Gu, Y., Yu, H., Zhang, Y., Zhou, X.: Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment. Ind. Crops Prod. 144, 111985 (2020). https://doi.org/10.1016/j.indcrop.2019.111985

    Article  Google Scholar 

  17. Bianco, F., Senol, H., Papirio, S.: Enhanced lignocellulosic component removal and biomethane potential from chestnut shell by a combined hydrothermal-alkaline pretreatment. Sci. Total Environ. 762, 144178 (2021). https://doi.org/10.1016/j.scitotenv.2020.144178

    Article  Google Scholar 

  18. Du, J., Qian, Y., Xi, Y., Lü, X.: Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw. Renew. Energy 139, 261–267 (2019). https://doi.org/10.1016/j.renene.2019.01.097

    Article  Google Scholar 

  19. Song, X., Wachemo, A.C., Zhang, L., Bai, T., Li, X., Zuo, X., Yuan, H.: Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover. Bioresour. Technol. 289, 121646 (2019). https://doi.org/10.1016/j.biortech.2019.121646

    Article  Google Scholar 

  20. Lu, J., Liu, H., Xia, F., Zhang, Z., Huang, X., Cheng, Y., Wang, H.: The hydrothermal-alkaline/oxygen two-step pretreatment combined with the addition of surfactants reduced the amount of cellulase for enzymatic hydrolysis of reed. Bioresour. Technol. 308, 123324 (2020). https://doi.org/10.1016/j.biortech.2020.123324

    Article  Google Scholar 

  21. Mu, L., Zhang, L., Ma, J., Zhu, K., Chen, C., Li, A.: Enhancement of anaerobic digestion of phoenix tree leaf by mild alkali pretreatment: optimization by Taguchi orthogonal design and semi-continuous operation. Bioresour. Technol. 313, 123634 (2020). https://doi.org/10.1016/j.biortech.2020.123634

    Article  Google Scholar 

  22. Apha, A.: Standard methods for the examination of water and wastewater, 21sted. In: American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC (2005)

  23. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 10(74), 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  24. Zeng, Z., Li, Y., Rong, Y., Liu, C., Hu, X., Luo, S., Gong, E., Ye, J.: The relationship between reducing sugars and phenolic retention of brown rice after enzymatic extrusion. J. Cereal Sci. 74(2017), 244–249 (2017). https://doi.org/10.1016/j.jcs.2017.02.016

    Article  Google Scholar 

  25. Kian, L.K., Jawaid, M., Ariffin, H., Karim, Z.: Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114, 54–63 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.065

    Article  Google Scholar 

  26. Guan, R., Gu, J., Wachemo, A.C., Yuan, H., Li, X.: Novel insights into anaerobic digestion of rice straw using combined pretreatment with CaO and the liquid fraction of digestate: anaerobic digestion performance and kinetic analysis. Energy Fuel 34(2), 1119–1130 (2019). https://doi.org/10.1021/acs.energyfuels.9b02104

    Article  Google Scholar 

  27. Nguyen, D.D., Jeon, B.-H., Jeung, J.H., Rene, E.R., Banu, J.R., Ravindran, B., Vu, C.M., Ngo, H.H., Guo, W., Chang, S.W.: Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol. 280, 269–276 (2019). https://doi.org/10.1016/j.biortech.2019.02.033

    Article  Google Scholar 

  28. Kafle, G.K., Kim, S.H., Sung, K.I.: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 127, 326–336 (2013). https://doi.org/10.1016/j.biortech.2012.09.032

    Article  Google Scholar 

  29. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19(6), 716–723 (1974). https://doi.org/10.1109/tac.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  30. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978). https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  31. Ilanidis, D., Stagge, S., Jönsson, L.J., Martín, C.: Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor. Ind. Crops Prod. (2021). https://doi.org/10.1016/j.indcrop.2020.113077

    Article  Google Scholar 

  32. Yuan, H., Li, R., Zhang, Y., Li, X., Liu, C., Meng, Y., Lin, M., Yang, Z.: Anaerobic digestion of ammonia-pretreated corn stover. Biosyst. Eng. 129, 142–148 (2015). https://doi.org/10.1016/j.biosystemseng.2014.09.010

    Article  Google Scholar 

  33. Yuan, H., Song, X., Guan, R., Zhang, L., Li, X., Zuo, X.: Effect of low severity hydrothermal pretreatment on anaerobic digestion performance of corn stover. Bioresour. Technol. 294, 122238 (2019). https://doi.org/10.1016/j.biortech.2019.122238

    Article  Google Scholar 

  34. Romaní, A., Garrote, G., Alonso, J.L., Parajó, J.C.: Experimental assessment on the enzymatic hydrolysis of hydrothermally pretreated Eucalyptus globulus wood. Ind. Eng. Chem. Res. 49(10), 4653–4663 (2010). https://doi.org/10.1021/ie100154m

    Article  Google Scholar 

  35. Nitsos, C.K., Matis, K.A., Triantafyllidis, K.S.: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chemsuschem 6(1), 110–122 (2013). https://doi.org/10.1002/cssc.201200546

    Article  Google Scholar 

  36. Garrote, G., Falque, E., Dominguez, H., Parajo, J.C.: Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour. Technol. 98(10), 1951–1957 (2007). https://doi.org/10.1016/j.biortech.2006.07.049

    Article  Google Scholar 

  37. Ko, J.K., Kim, Y., Ximenes, E., Ladisch, M.R.: Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 112(2), 252–262 (2015). https://doi.org/10.1002/bit.25349

    Article  Google Scholar 

  38. Wang, Z.-W., Zhu, M.-Q., Li, M.-F., Wei, Q., Sun, R.-C.: Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw. Renew. Energy 134, 446–452 (2019). https://doi.org/10.1016/j.renene.2018.11.019

    Article  Google Scholar 

  39. Ying, W., Xu, Y., Zhang, J.: Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresour. Technol. 321, 124472 (2021). https://doi.org/10.1016/j.biortech.2020.124472

    Article  Google Scholar 

  40. Rajesh Banu, J., Sugitha, S., Kannah, R.Y., Kavitha, S., Yeom, I.T.: Marsilea spp.—a novel source of lignocellulosic biomass: effect of solubilized lignin on anaerobic biodegradability and cost of energy products. Bioresour. Technol. 255, 220–228 (2018). https://doi.org/10.1016/j.biortech.2018.01.103

    Article  Google Scholar 

  41. Antwi, E., Engler, N., Nelles, M., Schüch, A.: Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues. Waste Manag. 88, 131–140 (2019). https://doi.org/10.1016/j.wasman.2019.03.034

    Article  Google Scholar 

  42. Sambusiti, C., Monlau, F., Ficara, E., Carrère, H., Malpei, F.: A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl. Energy 104, 62–70 (2013). https://doi.org/10.1016/j.apenergy.2012.10.060

    Article  Google Scholar 

  43. Pedersen, M., Meyer, A.S.: Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol. 27(6), 739–750 (2010). https://doi.org/10.1016/j.nbt.2010.05.003

    Article  Google Scholar 

  44. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.-P., Carrere, H.: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46(21), 12217–12225 (2012). https://doi.org/10.1021/es303132t

    Article  Google Scholar 

  45. Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53(8), 233–241 (2006). https://doi.org/10.2166/wst.2006.254

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tianjin City Science and Technology Planning Project (18ZXSZSF00120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Song, X., Yuan, H. et al. Two-Step Pretreatment of Hydrothermal with Ammonia for Cow Bedding: Pretreatment Characteristics, Anaerobic Digestion Performance and Kinetic Analysis. Waste Biomass Valor 12, 5675–5687 (2021). https://doi.org/10.1007/s12649-021-01395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01395-0

Keywords

Navigation