Skip to main content
Log in

Bulk superconductivity in the Dirac semimetal TlSb

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A feasible strategy for realizing the Majorana fermions is searching for a simple compound with both bulk superconductivity and Dirac surface states. In this paper, we perform calculations of electronic band structure, the Fermi surface, and the surface states, and measure the resistivity, magnetization, and specific heat of a TlSb compound with a CsCl-type structure. The band structure calculations show that TlSb is a Dirac semimetal when spin-orbit coupling is considered. TlSb is first determined to be a type-II superconductor with Tc=4.38 K, Hc1(0) = 148 Oe, Hc2(0)=1.12 T, and κGL = 10.6. We also confirm that TlSb is a moderately coupled s-wave superconductor. Although we cannot determine the band near the Fermi level EF that is responsible for superconductivity, its coexistence with topological surface states implies that the TlSb compound may be a simple material platform to realize the fault-tolerant quantum computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Beenakker, and L. Kouwenhoven, Nat. Phys. 12, 618 (2016), arXiv: 1606.09439.

    Article  Google Scholar 

  2. M. Sato, and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017), arXiv: 1608.03395.

    Article  ADS  Google Scholar 

  3. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  4. G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998), arXiv: cond-mat/9808159.

    Article  ADS  Google Scholar 

  5. S. Kashiwaya, H. Kashiwaya, H. Kambara, T. Furuta, H. Yaguchi, Y. Tanaka, and Y. Maeno, Phys. Rev. Lett. 107, 077003 (2011), arXiv: 1105.1405.

    Article  ADS  Google Scholar 

  6. A. P. Mackenzie, and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  7. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010), arXiv: 0909.2890.

    Article  ADS  Google Scholar 

  8. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011), arXiv: 1108.1101.

    Article  ADS  Google Scholar 

  9. K. Matano, M. Kriener, K. Segawa, Y. Ando, and G. Zheng, Nat. Phys. 12, 852 (2016), arXiv: 1512.07086.

    Article  Google Scholar 

  10. S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, and Y. Maeno, Nat. Phys. 13, 123 (2017), arXiv: 1602.08941.

    Article  Google Scholar 

  11. Z. Liu, X. Yao, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, and Y. Zhang, J. Am. Chem. Soc. 137, 10512 (2015).

    Article  Google Scholar 

  12. Y. Qiu, K. N. Sanders, J. Dai, J. E. Medvedeva, W. Wu, P. Ghaemi, T. Vojta, and Y. S. Hor, arXiv: 1512.03519.

  13. S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Phys. Rev. Lett. 109, 217004 (2012), arXiv: 1208.0059.

    Article  ADS  Google Scholar 

  14. L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.

    Article  ADS  Google Scholar 

  15. J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Phys. Rev. Lett. 109, 056803 (2012), arXiv: 1202.2323.

    Article  ADS  Google Scholar 

  16. M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 336, 52 (2012), arXiv: 1112.1772.

    Article  ADS  Google Scholar 

  17. F. Yang, F. Qu, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, C. Yang, L. Fu, and L. Lu, Phys. Rev. B 86, 134504 (2012).

    Article  ADS  Google Scholar 

  18. E. Wang, H. Ding, A. V. Fedorov, W. Yao, Z. Li, Y. F. Lv, K. Zhao, L. G. Zhang, Z. Xu, J. Schneeloch, R. D. Zhong, S. H. Ji, L. L. Wang, K. He, X. C. Ma, G. Gu, H. Yao, Q. K. Xue, X. Chen, and S. Zhou, Nat. Phys. 9, 621 (2013), arXiv: 1309.6676.

    Article  Google Scholar 

  19. J. B. Oostinga, L. Maier, P. Schüffelgen, D. Knott, C. Ames, C. Brüne, G. Tkachov, H. Buhmann, and L. W. Molenkamp, Phys. Rev. X 3, 021007 (2013), arXiv: 1306.0154.

    Google Scholar 

  20. A. D. K. Finck, C. Kurter, Y. S. Hor, and D. J. van Harlingen, Phys. Rev. X 4, 041022 (2014), arXiv: 1403.5588.

    Google Scholar 

  21. M. Snelder, C. G. Molenaar, Y. Pan, D. Wu, Y. K. Huang, A. de Visser, A. A. Golubov, W. G. van der Wiel, H. Hilgenkamp, M. S. Golden, and A. Brinkman, Supercond. Sci. Technol. 27, 104001 (2014), arXiv: 1406.7687.

    Article  ADS  Google Scholar 

  22. J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger, O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Brüne, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann, and L. W. Molenkamp, Nat. Commun. 7, 10303 (2016), arXiv: 1503.05591.

    Article  ADS  Google Scholar 

  23. D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H. J. Gao, Science 362, 333 (2018), arXiv: 1706.06074.

    Article  ADS  Google Scholar 

  24. T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, T. Hanaguri, T. Sasagawa, and T. Tamegai, Nat. Mater. 18, 811 (2019), arXiv: 1812.08995.

    Article  ADS  Google Scholar 

  25. C. Chen, K. Jiang, Y. Zhang, C. Liu, Y. Liu, Z. Wang, and J. Wang, Nat. Phys. 16, 536 (2020), arXiv: 2003.04539.

    Article  Google Scholar 

  26. X. Chen, M. Chen, W. Duan, H. Yang, and H. H. Wen, Nano Lett. 20, 2965 (2020), arXiv: 1905.05735.

    Article  ADS  Google Scholar 

  27. J. X. Yin, Z. Wu, J. H. Wang, Z. Y. Ye, J. Gong, X. Y. Hou, L. Shan, A. Li, X. J. Liang, X. X. Wu, J. Li, C. S. Ting, Z. Q. Wang, J. P. Hu, P. H. Hor, H. Ding, and S. H. Pan, Nat. Phys. 11, 543 (2015), arXiv: 1403.1027.

    Article  Google Scholar 

  28. M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008), arXiv: 0807.4775.

    Article  ADS  Google Scholar 

  29. L. Jin, X. M. Zhang, X. F. Dai, L. Y. Wang, H. Y. Liu, and G. D. Liu, IUCrJ 6, 688 (2019).

    Article  Google Scholar 

  30. Y. Du, F. Tang, D. Wang, L. Sheng, E. Kan, C. G. Duan, S. Y. Savrasov, and X. Wan, npj Quant. Mater. 2, 3 (2017), arXiv: 1605.07998.

    Article  ADS  Google Scholar 

  31. B. Predel, and W. Schwermann, Z. Naturforsch. A 25, 877 (1970).

    Article  ADS  Google Scholar 

  32. A. C. Larson, and R. B. von Dreele, General Structure Analysis System (GSAS), Technical Report (Los Alamos National Laboratory, 2000), p. 86

  33. K. Schwarz, P. Blaha, and G. K. H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  35. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).

    Article  ADS  Google Scholar 

  36. N. Marzari, and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997), arXiv: cond-mat/9707145.

    Article  ADS  Google Scholar 

  37. I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001), arXiv: cond-mat/0108084.

    Article  ADS  Google Scholar 

  38. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012), arXiv: 1112.5411.

    Article  ADS  Google Scholar 

  39. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018), arXiv: 1703.07789.

    Article  ADS  Google Scholar 

  40. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F-Met. Phys. 15, 851 (1985).

    Article  ADS  Google Scholar 

  41. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007), arXiv: cond-mat/0607699.

    Article  ADS  Google Scholar 

  42. R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84, 075119 (2011), arXiv: 1101.2011.

    Article  ADS  Google Scholar 

  43. A. A. Soluyanov, and D. Vanderbilt, Phys. Rev. B 83, 035108 (2011), arXiv: 1009.1415.

    Article  ADS  Google Scholar 

  44. H. Wiesmann, M. Gurvitch, H. Lutz, A. Ghosh, B. Schwarz, M. Strongin, P. B. Allen, and J. W. Halley, Phys. Rev. Lett. 38, 782 (1977).

    Article  ADS  Google Scholar 

  45. O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod. Phys. 75, 1085 (2003), arXiv: cond-mat/0305412.

    Article  ADS  Google Scholar 

  46. Z. Fisk, and G. W. Webb, Phys. Rev. Lett. 36, 1084 (1976).

    Article  ADS  Google Scholar 

  47. D. W. Woodard, and G. D. Cody, Phys. Rev. 136, A166 (1964).

    Article  ADS  Google Scholar 

  48. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  49. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  50. M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Phys. Rev. B 89, 020505 (2014).

    Article  ADS  Google Scholar 

  51. A. B. Karki, Y. M. Xiong, N. Haldolaarachchige, S. Stadler, I. Vekhter, P. W. Adams, D. P. Young, W. A. Phelan, and J. Y. Chan, Phys. Rev. B 83, 144525 (2011), arXiv: 1011.6099.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHu Fang.

Additional information

This work was supported by the National Key Program of China (Grant No. 2016YFA0300402), the National Natural Science Foundation of China (Grant Nos. 12074335, and 11974095), the Fundamental Research Funds for the Central Universities, and an open program from the National Lab of Solid-State Microstructures of Nanjing University (Grant No. M32025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, B., Lou, Z. et al. Bulk superconductivity in the Dirac semimetal TlSb. Sci. China Phys. Mech. Astron. 64, 247411 (2021). https://doi.org/10.1007/s11433-020-1653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1653-x

Keywords

Navigation