Skip to main content
Log in

Analysis of interference on mirror-aided non-LOS backhaul data transmission in VLC attocell networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Visible light communication (VLC) is a promising technology that addresses the bandwidth bottleneck of radio-frequency based indoor wireless networks. Optical attocell networks using VLC backhaul links have been proposed. Line-of-sight (LOS) and mirror-aided non-LOS links can be used for backhaul transmission. As the visible light spectrum is used for both access downlink and bidirectional backhaul transmission, co-channel interference is a major issue. In this paper, we analyze the performance of optical attocell networks using VLC backhaul links taking into account illumination and eye safety requirements. Based on the signal-to-interference-plus-noise ratio of different backhaul links, the bandwidth allocation ratio when using an in-band frequency reused scheme is discussed. Finally, aggregate data rates of networks using different VLC backhaul configurations are compared. Results show that LOS backhaul configuration can achieve nearly optimal network performance while mirror-aided non-LOS backhaul configuration is more robust against misalignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., Haas, H.: VLC : Beyond Point-to-Point Communication. IEEE Commun. Mag. 52(7), 98 (2014)

    Article  Google Scholar 

  2. Sevincer, A., Member, A.B., Member, M.B.: LIGHTNETs: smart LIGHTing and mobile optical wireless NETworks—a survey. IEEE Commun. Surv. Tutor. 15(4), 1620 (2013)

    Article  Google Scholar 

  3. Borah, D.K., Boucouvalas, A.C., Davis, C.C., Hranilovic, S., Yiannopoulos, K.: A review of communication-oriented optical wireless systems. EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012)

    Article  Google Scholar 

  4. Jungnickel, V., Uysal, M., Serafimovski, N., Baykas, T., Ciaramella, E., Ghassemlooy, Z., Green, R., Haas, H., Haigh, P.A., Jimenez, V.P.G., Miramirkhani, F., Wolf, M.: A European View on the Next Generation Optical Wireless Communication Standard. In: IEEE Conference on Standards for Communications and Networking (CSCN) (2015), pp. 106–111

  5. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56 (2011). https://doi.org/10.1109/MCOM.2011.6011734

    Article  Google Scholar 

  6. Kazemi, H., Haas, H.: Downlink cooperation with fractional frequency reuse in DCO-OFDMA optical attocell networks. IEEE Int. Conf. Commun. (2016). https://doi.org/10.1109/ICC.2016.7511475

    Article  Google Scholar 

  7. Chen, C., Basnayaka, D.A., Haas, H.: Downlink performance of optical attocell networks. J. Lightwave Technol. 34(1), 137 (2016). https://doi.org/10.1109/JLT.2015.2511015

    Article  Google Scholar 

  8. Stefan, I., Burchardt, H., Haas, H.: Area spectral efficiency performance comparison between VLC and RF femtocell networks. In: IEEE International Conference on Communications pp. 3825–3829 (2013). https://doi.org/10.1109/ICC.2013.6655152

  9. Komine, T., Nakagawa, M.: Integrated system of white LED visible light communication and power line communication. IEEE Trans. Consum. Electron. 49(1), 71 (2003)

    Article  Google Scholar 

  10. Wang, Y., Chi, N., Wang, Y., Tao, L., Shi, J.: Network architecture of a high-speed visible light communication local area network. IEEE Photonics Technol. Lett. 27(2), 197 (2015). https://doi.org/10.1109/LPT.2014.2364955

    Article  Google Scholar 

  11. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649 (2015). https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  12. Liu, J., Zhao, B., Geng, L., Yuan, Z., Wang, Y.: Communication performance of broadband PLC technologies for smart grid. IEEE Int. Symp. Power Line Commun. Appl. (2011). https://doi.org/10.1109/ISPLC.2011.5764448

    Article  Google Scholar 

  13. Feng, L., Hu, R.Q., Wang, J., Xu, P., Qian, Y.: Applying VLC in 5G networks: architectures and key technologies. IEEE Netw. 30(6), 77 (2016). https://doi.org/10.1109/MNET.2016.1500236RP

    Article  Google Scholar 

  14. Wu, T., Rappaport, T.S., Collins, C.M.: Safe for generations to come: considerations of safety for millimeter waves in wireless communications. IEEE Microwave Mag. 16(2), 65 (2015). https://doi.org/10.1109/MMM.2014.2377587

    Article  Google Scholar 

  15. Kazemi, H., Safari, M., Haas, H.: A wireless backhaul solution using visible light communication for indoor Li-fi attocell networks. In IEEE ICC 2017 Optical Networks and Systems Symposium (2017)

  16. Kazemi, H., Safari, M., Haas, H.: A Wireless Optical Backhaul Solution for Optical Attocell Networks. IEEE Trans. Wireless Commun. 18(2), 807 (2019). https://doi.org/10.1109/TWC.2018.2883465

    Article  Google Scholar 

  17. Wu, Y., Audenaert, P., Pickavet, M., Colle, D.: Mirror-aided non-LOS VLC channel characterizations with a time-efficient simulation model. Photon Netw. Commun. 38(38), 151 (2019). https://doi.org/10.1007/s11107-019-00841-3

    Article  Google Scholar 

  18. Chen, C., Videv, S., Tsonev, D., Haas, H.: Fractional frequency rreuse in DCO-OFDM-based optical attocell networks. J. Lightwave Technol. 33(19), 3986 (2015). https://doi.org/10.1109/JLT.2015.2458325

    Article  Google Scholar 

  19. Gfeller, F.R., Bapst, U.: Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 67(11), 1474 (1979). https://doi.org/10.1109/proc.1979.11508

    Article  Google Scholar 

  20. Kahn, J., Barry, J.: Wireless infrared communications. Proc. IEEE 85(2), 265 (1997). https://doi.org/10.1007/978-1-4615-2700-8

    Article  Google Scholar 

  21. Armstrong, J., Schmidt, B.J.C.: Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun. Lett. 12(5), 343 (2008). https://doi.org/10.1109/LCOMM.2008.080193

    Article  Google Scholar 

  22. Yang, H., Pandharipande, A.: Full-duplex relay VLC in LED lighting linear system topology. In: Industrial Electronics Conference (IEEE), pp. 6075–6080 (2013). https://doi.org/10.1109/IECON.2013.6700133

  23. Narmanlioglu, O., Kizilirmak, R.C., Miramirkhani, F., Uysal, M.: Cooperative visible light communications with full-duplex relaying. IEEE Photonics J. 9(3), 1 (2017). https://doi.org/10.1109/JPHOT.2017.2708746

    Article  Google Scholar 

  24. Radiation Safety Office, Laser Safety Mannual (2007)

  25. European Committee for Standardization, Light and lighting - Lighting of work places - Part 1 : Indoor work (2002)

  26. Suk, J.Y.: Luminance and vertical eye illuminance thresholds for occupants’ visual comfort in daylit office environments. Build. Environ. 148, 107 (2019). https://doi.org/10.1016/j.buildenv.2018.10.058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Pickavet, M. & Colle, D. Analysis of interference on mirror-aided non-LOS backhaul data transmission in VLC attocell networks. Photon Netw Commun 41, 189–201 (2021). https://doi.org/10.1007/s11107-021-00928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00928-w

Keywords

Navigation