Skip to main content
Log in

Micro- and Ultramicroelemental Content in Otoliths of Blue Antimora Antimora rostrata and Pacific Flatnose A. microlepis (Moridae, Teleostei)

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The content of 53 micro- and ultramicroelements in otoliths of two deep-sea fish species, blue antimora Antimora rostrata from the Northwest Atlantic (NWA) and Pacific flatnose Antimora microlepis from the Northeast Pacific (NEP), is studied. The otoliths of these species were characterized by the maximum concentration of strontium, nickel, zinc, barium, chromium, copper, lithium, cobalt, and zirconium (in descending order). The content of barium, tungsten, and lithium was higher in otoliths of the former species, while that of yttrium and uranium, in otoliths of the latter. This is probably due to differences in the chemical composition of NWA and NEP waters, as well as to differences in the linear size of fishes and changes in the concentrations of individual elements during ontogeny. The lead, arsenic, zinc, copper, and nickel contents in the otoliths, kidneys, muscles, and liver of fishes from different areas are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. A. Davletshina, L. V. Shul’gina, K. G. Pavel’, and I. V. Mal’tsev, “Technoeconomic characteristics of abyssal fish finescale mora Antimora microlepis,” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 198, 230–238 (2019).

    Google Scholar 

  2. A. M. Orlov, R. V. Artemov, and S. Yu. Orlova, “The elemental composition of swimbladders in some deepwater fishes of the North Atlantic,” Russ. J. Mar. Biol. 42, 495–500 (2016).

    Article  Google Scholar 

  3. D. S. Pavlov, K. V. Kuzishchin, M. A. Gruzdeva, et al., “Life history strategy diversity in the Kamchatkan Dolly Varden char Salvelinus malma (Walbaum) (Salmonidae, Salmoniformes): ontogenetic reconstructions based on the data of X-ray fluorescence analysis of the microchemistry of recording structures,” Dokl. Biol. Sci. 450, 142–145 (2013).

    Article  Google Scholar 

  4. D. S. Pavlov, K. Yu. Samoilov, K. V. Kuzishchin, et al., “Diversity of life strategies of pikepech Sander lucioperca (L.) in the Lower Volga (by the data of microelement composition of otoliths),” Inland Water Biol. 9, 382–389 (2016).

    Article  Google Scholar 

  5. L. A. Pavlova and S. M. Pavlov, “X-ray spectral electron-probe microanalysis of fish otoliths as an advanced method for environmental monitoring,” Metody Ob”ekty Khim. Anal. 1 (1), 48–53 (2006).

    Google Scholar 

  6. J. R. Ashford, A. I. Arkhipkin, and C. M. Jones, “Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides?” J. Fish. Biol. 69, 708–721 (2006).

    Article  Google Scholar 

  7. G. E. Bath, S. R. Thorrold, C. M. Jones, et al., “Strontium and barium uptake in aragonitic otoliths of marine fish,” Geochim. Cosmochim. Acta 64 (10), 1705–1714 (2000).

    Article  Google Scholar 

  8. G. A. Begg, S. E. Campana, A. J. Fowler, and I. M. Suthers, “Otolith research and application: current directionsin innovation and implementation,” Mar. Freshwater Res. 56, 477–483 (2005).

    Article  Google Scholar 

  9. G. M. Cailliet, A. H. Andrews, E. J. Burton, et al., “Age determination and validation studies of marine fishes: do deep-dwellers live longer?” Exp. Gerontol. 36 (4–6), 739–764 (2001).

    Article  Google Scholar 

  10. S. E. Campana, “Chemistry and composition of fish otoliths: pathways, mechanisms and applications,” Mar. Ecol.: Prog. Ser. 188, 263–297 (1999).

    Article  Google Scholar 

  11. S. E. Campana, “Otolith elemental composition as a natural marker of fish stocks,” in Stock Identification Methods, Ed. by S. X. Cadrin, (Academic, New York, 2005), pp. 227–245.

    Google Scholar 

  12. S. E. Campana and S. R. Thorrold, “Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?” Can. J. Fish. Aquat. Sci. 58 (1), 30–38 (2001).

    Article  Google Scholar 

  13. M. Cronin, I. M. Davies, A. Newton, et al., “Trace metal concentrations in deep sea fish from the North Atlantic,” Mar. Environ. Res. 45, 225–238 (1998).

    Article  Google Scholar 

  14. F. A. Cross, L. H. Hardy, N. Y. Jones, and R. T. Barber, “Relation between total body weight and concentrations of manganese, iron, copper, zinc, and mercury in white muscle of bluefish (Pomatomus saltatrix) and a bathy-demersal fish (Antimora rostrata),” J. Fish. Res. Board Can. 30, 1287–1291 (1973).

    Article  Google Scholar 

  15. G. E. Fenton and S. A. Short, “Radiometric analysis of blue grenadier, Macrunonus novaezelandiae, otolith cores,” Fish. Bull. 93 (2), 391–396 (1995).

    Google Scholar 

  16. P. H. Frey, A. A. Keller, and V. Simon, “Dynamic population trends observed in the deep-living Pacific flatnose, Antimora microlepis, on the U.S. West coast,” Deep Sea Res., Part I 122, 105–112 (2017).

    Article  Google Scholar 

  17. I. Gordeev, S. Sokolov, R. Bañon, et al., “Parasites of the blue antimora, Antimora rostrata and slender codling, Halargyreus johnsonii (Gadiformes: Moridae), in the Northwestern Atlantic,” Acta Parasitol. 64 (3), 489–500 (2019).

    Article  Google Scholar 

  18. R. Higgins, E. Isidro, G. Menezes, and A. T. Correia, “Otolith elemental signatures indicate population separation in deep-sea rockfish, Helicolenus dactylopterus and Pontinus kuhlii, from the Azores,” J. Sea Res. 83, 202–208 (2013).

    Article  Google Scholar 

  19. G. R. Hoff and L. A. Fuiman, “Environmentally-induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths,” Bull. Mar. Sci. 56, 578–591 (1995).

    Google Scholar 

  20. C. R. Kastelle, D. K. Kimura, A. E. Nevissi, and D. R. Gunderson, “Using Pb-210/Ra-226 disequilibria for sablefish, Anoplopoma fimbria, age validation,” Fish. Bull. 92 (2), 292–301 (1994).

    Google Scholar 

  21. M. Labonne, E. Morize, M. Kulbicki, et al., “Otolith chemical signature and growth of Chaetodon speculum in coastal areas of New Caledonia,” Estuarine, Coastal Shelf Sci. 78 (3), 493–504 (2008).

    Article  Google Scholar 

  22. C. Longmore, K. Fogarty, F. C. Neat, et al., “A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris,” Environ. Biol. Fish. 89, 591–605 (2010).

    Article  Google Scholar 

  23. C. Longmore, C. Trueman, F. Neat, et al., “Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Coryphaenoides rupestris,” Mar. Ecol.: Prog. Ser. 435, 209–224 (2011).

    Article  Google Scholar 

  24. C. Longmore, C. N. Trueman, F. Neat, et al., “Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish,” Can. J. Fish. Aquat. Sci. 71 (9), 1312–1323 (2014). https://doi.org/10.1139/cjfas-2013-0343

    Article  Google Scholar 

  25. I. Martins, V. Costa, F. M. Porteiro, et al., “Mercury concentrations in fish species caught at Mid-Atlantic Ridge hydrothermal vent fields,” Mar. Ecol.: Prog. Ser. 320, 253–258 (2006).

    Article  Google Scholar 

  26. S. Mormede and I. M. Davies, “Heavy metal concentrations in commercial deep sea fish from the Rockall Trough,” Cont. Shelf Res. 21 (8–10), 899–916 (2001).

    Article  Google Scholar 

  27. R. L. Radtke and D. J. Shafer, “Environmental sensitivity of fish otolith microchemistry,” Mar. Freshwater Res. 43 (5), 935–951 (1992).

    Article  Google Scholar 

  28. J. N. Smith, R. Nelson, and S. E. Campana, “The use of Pb-210/Ra-226 and Th-228/Ra-228 dis-equilibria in the ageing of otoliths of marine fish,” in Radionuclides in the Study of Marine Processes, Ed. by P. J. Kershaw and D. S. Woodhead (Springer-Verlag, New York, 1991), pp. 350–359.

    Google Scholar 

  29. S. C. Swan, J. D. M. Gordon, and T. Shimmield, “Preliminary investigations on the uses of otolith microchemistry for stock discrimination of the deep-water black scabbardfish (Aphanopus carbo) in the North East Atlantic,” J. Northwest Atl. Fish. Sci. 31, 221–231 (2003).

    Article  Google Scholar 

  30. S. C. Swan, J. D. M. Gordon, B. Morales-Nin, et al., “Otolith microchemistry of Nezumia aequalis (Pisces: Macrouridae) from widely different habitats in the Atlantic and Mediterranean,” J. Mar. Biol. Assoc. U.K. 83, 883–886 (2003).

    Article  Google Scholar 

  31. P. Vas, J. D. M. Gordon, P. R. Fielden, and J. Overnell, “The trace metal ecology of the ichthyofauna in the Rockall Trough, North-Eastern Atlantic,” Mar. Pollut. Bull. 26 (11), 607–612 (1993).

    Article  Google Scholar 

  32. B. Walther and S. R. Thorrold, “Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish,” Mar. Ecol.: Prog. Ser. 311, 125–130 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to their colleagues Rafael Bañon (Instituto de Investigations Marinas, Vigo, Spain) and Peter Frey (Northwest Fisheries Science Center, Seattle, United States) for providing Antimora spp. otoliths, as well as to L.A. Pel’gunova (Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia) for providing valuable advice during preparation of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Orlov.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korostelev, N.B., Orlov, A.M. Micro- and Ultramicroelemental Content in Otoliths of Blue Antimora Antimora rostrata and Pacific Flatnose A. microlepis (Moridae, Teleostei). Oceanology 60, 798–802 (2020). https://doi.org/10.1134/S0001437020050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020050094

Keywords:

Navigation