Skip to main content

Advertisement

Log in

Absorption and Aggregation Characteristics and Changes in the Reflectance Spectrum of an Arid Desert Plant under Gold, Copper, Zinc and Nickel Stress

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Remote sensing phytochemistry has been proven by many studies to be an effective method for the detection of hidden minerals in vegetation-covered areas. In this study, we determined whether Seriphidium terrae-albae, a small shrub distributed widely in arid deserts, could be an effective sampling medium for application in remote sensing plant geochemistry. The absorption and aggregation characteristics and spectral changes in Seriphidium terrae-albae transplants at varying soil concentrations of copper (Cu), nickel (Ni), gold (Au), and zinc (Zn) were studied via simulation testing using artificial transplant cultivation. The results showed the following. (1) There exists a good logarithmic relationship between Cu and Zn contents in Seriphidium terrae-albae and the corresponding contents in soil, with coefficients of determination (R2) reaching as high as 0.936 for Cu and 0.9568 for Zn, while a linear relationship is observed between Au and Ni contents in the plant and the corresponding contents in soil, with R2 values as high as 0.9524 for Au and 0.9177 for Ni. (2) The accumulation of Cu and Ni in Seriphidium terrae-albae transplants grown in soil with high Cu and Ni contents is higher than in controls grown in normal soil, demonstrating the ability to clearly indicate abnormal Cu and Ni contents. (3) The ratio vegetation index based on the reflectance at 747 and 742 nm can be adopted to estimate Cu content in Seriphidium terrae-albae. These results suggest that Seriphidium terrae-albae exhibits great potential as an effective geochemical remote sensing plant sampling medium for concealed Cu deposits. This study provides proof of concept for the hyperspectral remote sensing technique in the exploration of hidden minerals in arid deserts, a quick measurement means of Cu content anomalies in the Seriphidium terrae-albae plant and a reference for the identification of prospective metallogenic areas, which could not only expand the existing prospecting space but could also improve the prospecting efficiency in arid deserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anand, R. R., Cornelius, M., & Phang, C. (2007). Use of vegetation and soil in mineral exploration in areas of transported overburden Yilgarn Craton Western Australia: a contribution towards understanding metal transportation processes. Geochemistry: Exploration, Environment, Analysis, 7(3), 267–288.

    Google Scholar 

  • Asmaryan, S., Warner, T. A., Muradyan, V., & Nersisyan, G. (2013). Mapping tree stress associated with urban pollution using the WorldView-2 Red Edge band. Remote Sensing Letters, 4(2), 200–209.

    Article  Google Scholar 

  • Banerjee, B. P., Raval, S., Zhai, H., & Cullen, P. J. (2017). Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data. Environmental Monitoring and Assessment, 189, 604.

    Article  Google Scholar 

  • Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109(2), 347–352.

    Article  Google Scholar 

  • Broge, N., & Mortensen, J. (2002). Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 81(1), 45–57.

    Article  Google Scholar 

  • Ceng, K., Ye, R., Shen, Y. L., & Wu, Y. B. (2003). The Effect of 1:50000 Geochemical Vegetation Survey in the Beishan Gobi Desert Region. Geology and Prospecting, 39(6), 86–89. (In Chinese with English abstract).

    Google Scholar 

  • Chang, S. H., & Collins, W. (1983). Confirmation of the airborne biogeophysical mineral exploration technique using laboratory methods. Economic Geology, 78(4), 723–736.

    Article  Google Scholar 

  • Chen, B. C., Lai, H.-Y., & Juang, K.-W. (2012). Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety, 80, 393–400.

    Article  Google Scholar 

  • Chi, G. Y., Liu, X. H., Liu, S. H., & Yang, Z. F. (2006). Studies of Relationships between Cu Pollution and Spectral Characteristics of Tritiznm Aestivum L. Spectroscopy and Spectral Analysis, 26(7), 1272–1276.

    Google Scholar 

  • Chi, G. Y., Shi, Y., Chen, X., Ma, J., & Zheng, T. H. (2012). Effects of Metal Stress on Visible/Near-Infrared Reflectance Spectra of Vegetation. Advanced Materials Research, 347–353, 2735–2738.

    Google Scholar 

  • Cho, U. H., & Park, J. O. (1999). Distribution and phytotoxicity of cadmium in tomato seedlings. Journal of Plant Biology, 42(1), 49–56.

    Article  Google Scholar 

  • Christian, F., & Wolfgang, B. (2002). Monitoring of Environmental changes caused by hard coal mining. Proceedings of SPIE, 4545, 64–72.

    Article  Google Scholar 

  • Croft, H., Chen, J. M., & Zhang, Y. (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecological Complexity, 17, 119–130.

    Article  Google Scholar 

  • Cui, S. C., Zhou, K. F., & Ding, R. F. (2019). Extraction of Plant Abnormal Information in Mining Area Based on Hyperspectral. Spectroscopy and Spectral Analysis, 39(1), 241–249.

    Google Scholar 

  • Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98(1), 29–36.

    Article  Google Scholar 

  • Demetriades-Shah, T. H., Steven, M. D., & Clark, J. A. (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33(1), 55–64.

    Article  Google Scholar 

  • Dunagan, S. C., Gilmore, M. S., & Varekamp, J. C. (2007). Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environmental Pollution, 148(1), 301–311.

    Article  Google Scholar 

  • Feng, X., Chen, H., Chen, Y., Zhang, C., Liu, X., Weng, H., et al. (2019). Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging. Science of the Total Environment, 659, 1021–1031.

    Article  Google Scholar 

  • Filippidis, A., Papastergios, G., Kantiranis, N., Michailidis, K., Chatzikirkou, A., & Katirtzoglou, K. (2012). The species of Silene compacta Fischer as indicator of zinc, iron and copper mineralization. Chemie Der Erde - Geochemistry, 72(1), 71–76.

    Article  Google Scholar 

  • Gao, H. X., Li, Z. X., Liu, B., & Zhou, X. G. (2018). Characteristic of soil geochemical anomaly and prospecting potential of the Bazilekuola copper deposit in Xinjiang China. Mineral Exploration, 9(11), 2209–2215. (in Chinese with English abstract).

    Google Scholar 

  • Gonzalez-Mendoza, D., Gil, F. E. Y., Escoboza-Garcia, F., Santamaria, J. M., & Zapata-Perez, O. (2013). Copper stress on photosynthesis of black mangle (Avicennia germinans). Annals of the Brazilian Academy of Sciences, 85(2), 665–670.

    Article  Google Scholar 

  • Götze, C., Jung, A., Merbach, I., Wennrich, R., & Gläßer, C. (2010). Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment. Open Geosciences, 2(2), 132–137.

    Article  Google Scholar 

  • Guan, L., Liu, X. N., & Cheng, C. Q. (2009). Research on Hyperspectral Information Parameters of Chlorophyll Content of Rice Leaf in Cd-Polluted Soil Environment. Spectroscopy and Spectral Analysis, 29(10), 2713–2716.

    Google Scholar 

  • Hede, A. N. H., Kashiwaya, K., Koike, K., & Sakurai, S. (2015). A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area. Remote Sensing of Environment, 171, 83–97.

    Article  Google Scholar 

  • Hodkinson, I. P., Dunn, C. E., Waldron, H. M., Scarlett, R., & Vose, C. P. (2015). Biogeochemical exploration using Triodia pungens in the Tanami Desert Australia. Geochemistry Exploration Environment Analysis, 15(2–3), 179–192.

    Article  Google Scholar 

  • Hoque, E., & Hutzler, P. J. (1992). Spectral blue-shift of red edge monitors damage class of beech trees. Remote Sensing of Environment, 39(1), 81–84.

    Article  Google Scholar 

  • Hu, X. S. (2002). Review on Biogeochemical Exploration for Ore Prospecting. Mineral Deposits, 21, 1148–1151. (In Chinese with English abstract).

    Google Scholar 

  • Hua, Y., & Wang, H. Q. (2006). Studies on the flavonoids from whole herbs of Seriphidium terrae-albae. China Journal of Chinese Material Medical, 31(10), 820–822. (In Chinese with English abstract).

    Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91.

    Article  Google Scholar 

  • Ji, J. F., Cui, W. D., & Sun, C. Y. (1995). A Preliminary Study of Botanogeochemical Exploration in the HuangJinDong Gold Deposit Human Province. Geophysical and geochemical exploration, 16(6), 470–473. (In Chinese with English abstract).

    Google Scholar 

  • Jiang, T., Jia, D. C., Chen, S. B., Bao, G. Z., Gao, W., Zhao, X., et al. (2013). Selection of Effective Indicator Elements and Plants for Phytogeochemical Prospecting: A Case Study of the Duobaoshan Copper Ore District in Heilongjiang Province. Geology and Exploration, 49(2), 346–351. (In Chinese with English abstract).

    Google Scholar 

  • Jiang, X. Y., & Zhao, K. F. (2001). Mechanism of Heavy Metal Injury and Resistance of Plants. Chinese Journal Applied Environment Biology, 7(1), 92–99. (In Chinese with English abstract).

    Google Scholar 

  • Kastori, R., Petrović, M., & Petrović, N. (1992). Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. Journal of Plant Nutrition, 15(11), 2427–2439.

    Article  Google Scholar 

  • Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh India. Journal of Hazardous Materials, 167(1–3), 366–373.

    Article  Google Scholar 

  • Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47(2), 259–266.

    Article  Google Scholar 

  • Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L). Plant and Soil, 200(2), 241–250.

    Article  Google Scholar 

  • Liu, L. Y. (2014). Principle and method of Vegetation Quantitative Remote Sensing. Beijing: The Science Publishing Company.

    Google Scholar 

  • Liu, M. L., Liu, X. N., Ding, W. H., & Wu, L. (2011a). Monitoring stress levels on rice heavy metal pollution from hyperspectral reflectance using wavelet-fractctal analysis. International Journal of Applied Earth Observation and Geoinformation, 13, 246–255.

    Article  Google Scholar 

  • Liu, M., Wang, T., Skidmore, A. K., & Liu, X. (2018). Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Science of the Total Environment, 637–638, 18–29.

    Article  Google Scholar 

  • Liu, Y. L., Chen, H., Wu, G. F., & Wu, X. G. (2010). Feasibility of estimating heavy metal concentrations in Phragmites austrakis using laboratory-based hyperspectral data- A case study along Le’an River, China. International Journal of Applied Earth Observation and Geoinformation, 12S, S166–S170.

    Article  Google Scholar 

  • Liu, Y., Li, W., Wu, G., & Xu, X. (2011b). Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data—A case study along Le’an River China. Geo-Spatial Information Science, 14(1), 10–16.

    Article  Google Scholar 

  • Lottermoser, B. G., Ashley, P. M., & Munksgaard, N. C. (2008). Biogeochemistry of Pb–Zn grasses, northwest Queensland, Australia: Implications for mineral exploration and mine site rehabilitation. Applied Geochemistry, 23, 723–742.

    Article  Google Scholar 

  • McInnes, B. I. A., Dunn, C. E., Cameron, E. M., & Kameko, L. (1996). Biogeochemical exploration for gold in tropical rain forest regions of Papua New Guinea. Journal of Geochemical Exploration, 57(1–3), 227–243.

    Article  Google Scholar 

  • Mocquot, B., Vangronsveld, J., Clijsters, H., & Mench, M. (1996). Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant and Soil, 182(2), 287–300.

    Article  Google Scholar 

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264.

    Article  Google Scholar 

  • Özdemir, Z. (2005). Pinus brutia as a biogeochemical medium to detect iron and zinc in soil analysis chromite deposits of the area Mersin Turkey. Chemie Der Erde—Geochemistry, 65(1), 79–88.

    Article  Google Scholar 

  • Özdemir, Z., & Sağıroğlu, A. (2000). Salix acmophylla, tamarix smyrnensis and phragmites australis as biogeochemical indicators for copper deposits in elazığ, turkey. Journal of Asian Earth Sciences, 18(5), 595–601.

    Article  Google Scholar 

  • Qu, Y., & Jiao, S. (2018). Quantitative Estimation of Tobacco Copper Ion Content from Hyperspectral Data by Inverting a Modified Radiative Transfer Model: Algorithm and Preliminary Validation. Journal of Spectroscopy, 2018, 1–12.

    Article  Google Scholar 

  • Rascio, N., Dalla Vecchia, F., La Rocca, N., Barbato, R., Pagliano, C., Raviolo, M., et al. (2008). Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environmental and Experimental Botany, 62(3), 267–278.

    Article  Google Scholar 

  • Reid, N., & Hill, S. M. (2010). Biogeochemical sampling for mineral exploration in arid terrains: Tanami Gold Province Australia. Journal of Geochemical Exploration, 104(3), 105–117.

    Article  Google Scholar 

  • Reid, N., & Hill, S. M. (2013). Spinifex biogeochemistry across arid Australia: mineral exploration potential and chromium accumulation. Applied Geochemistry, 29(1), 92–101.

    Article  Google Scholar 

  • Ren, H. Y., Zhuang, D. F., Pan, J. J., Shi, X. Z., & Wang, H. J. (2008). Hyper-spectral remote sensing to monitor vegetation stress. Journal of Soils and Sediments, 8(5), 323–326.

    Article  Google Scholar 

  • Schuerger, A. C., Capelle, G. A., Di Benedetto, J. A., Mao, C., Thai, C. N., Evans, M. D., et al. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing of Environment, 84(4), 572–588.

    Article  Google Scholar 

  • Shen, Y. C., Yang, J. Z., & Li, S. Z. (1999). Application of bigeochemistry in gold deposit exploration as exemplified by ANQI metallogenic fault in Western Junggar. Geological Science and Technology Information, 18(3), 55–59. (In Chinese with English abstract).

    Google Scholar 

  • Shi, G. Q., Yang, K. M., Sun, Y. Y., Liu, F., & Wei, H. F. (2015). Spectral Red Edge Position Responding and Pollution Monitoring of Corn Leaves Stressed by Heavy Metal Copper. Hubei Agricultural Sciences, 54(13), 3234–3239. (In Chinese with English abstract).

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3), 337–354.

    Article  Google Scholar 

  • Song, C. A., & Lei, L. Q. (2009). Research and Orientation of Exploration Vegetation Geochemistry in China. Journal of Guilin University of Technology, 29(1), 1–11. (In Chinese with English abstract).

    Google Scholar 

  • Song, C. A., Lei, L. Q., Yang, Q. J., Wang, D. R., & Yang, Y. S. (2011). Botanical geochemistry of redwood of the Au–Cu deposits in Beishan. Gansu. Geology and Prospecting, 37(3), 45–49. (In Chinese with English abstract).

    Google Scholar 

  • Song, C. A., Song, W., Ding, R. F., & Lei, L. Q. (2017). Phytogeochemical Characteristics of Seriphidium terrae-albae (Krasch) Poljak in the Metallic Ore Deposits in North Part of East Junggar Desert Area, Xinjiang and their Prospecting Significance. Geotectonica et Metallogenia, 41(1), 122–132. (In Chinese with English abstract).

    Google Scholar 

  • Song, C. A., Song, W., Ding, R. F., & Lei, L. Q. (2016). Formation Geo-mechanism of Botanogeochemical Anomaly of 460 Au Deposit in Beishan Area of Gansu. Journal of Earth Science and Environment, 38(6), 766–777. (In Chinese with English abstract).

    Google Scholar 

  • Song, C. A., Song, W., Wang, Z., & Yang, Z. P. (2015). Experimental comparison study between vegetation prospecting and soil prospecting in the Fozichong Pb-Zn deposit area Guangxi. Mineral Exploration, 6(4), 420–428. (In Chinese with English abstract).

    Google Scholar 

  • Sridhar, M. B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y. (2007). Monitoring the effects of arsenic and chromium accumulation in Chinese brake fern (Pteris vittata). International Journal of Remote Sensing, 28(5), 1055–1067.

    Article  Google Scholar 

  • Su, Y., Maruthi Sridhar, B. B., Han, F. X., Diehl, S. V., & Monts, D. L. (2006). Effect of Bioaccumulation of Cs and Sr Natural Isotopes on Foliar Structure and Plant Spectral Reflectance of Indian Mustard (Brassica Juncea). Water, Air, and Soil Pollution, 180(1–4), 65–74.

    Google Scholar 

  • Sun, T. T., Yang, K. M., Zhang, W., Cheng, L., & Wang, X. F. (2017). Monitoring copper pollution based on wave singular entropy of corn leaves. Acta Scientiae Circumstantiae, 37(11), 4360–4365. (In Chinese with English abstract).

    Google Scholar 

  • Tang, P., Liu, F., & Xu, J. F. (2014). The Progress of Hyperspectrum Remote Sensing under Heavy Metal Stress in Plants. Journal of Hangzhou Normal University (Natural Science Edition), 13(6), 634–640. (In Chinese with English abstract).

    Google Scholar 

  • Teisseire, H., & Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science, 153(1), 65–72.

    Article  Google Scholar 

  • Wang, J., Wang, T., Shi, T., Wu, G., & Skidmore, A. (2015). A Wavelet-Based Area Parameter for Indirectly Estimating Copper Concentration in Carex Leaves from Canopy Reflectance. Remote Sensing, 7(11), 15340–15360.

    Article  Google Scholar 

  • Wang, T., Wei, H., Zhou, C., Gu, Y., Li, R., Chen, H., et al. (2017). Estimating cadmium concentration in the edible part of Capsicum annuum using hyperspectral models. Environmental Monitoring & Assessment, 189(11), 548.

    Article  Google Scholar 

  • Wei, X. J., Song, C. A., & Ding, R. F. (2011). Botanogeochemical anomaly characteristics of the Fuhezhong W-Sn polymetallic ore district in Guangxi and their prospecting effectiveness. Geology in China, 38(3), 750–761. (In Chinese with English abstract).

    Google Scholar 

  • Wei, X. J., Song, C. A., Zhou, S. Y., & Lei, L. Q. (2017). The absorption characteristics of Dicranopteris pedata to Cu and Au and changes of its biochemical property. Geochimica (Beijing), 46(5), 488–496. (In Chinese with English abstract).

    Google Scholar 

  • Yang, K. M., Zhuo, W., Zhang, W. W., Wang, G. P., & Liu, E. X. (2016). Study on the Red Edge Response on Derivative Spectra of Potted Corn Leaves Stressed by Lead Ions. Science Technology and Engineering, 16(11), 110–114. (In Chinese with English abstract).

    Google Scholar 

  • Yao, F. L., & Sun, F. Y. (2006). Mineral Deposits Course. Beijing: Geological Publishing House.

    Google Scholar 

  • Zhang, B., Wu, D., Zhang, L., Jiao, Q., & Li, Q. (2012). Application of hyperspectral remote sensing for environment monitoring in mining areas. Environmental Earth Sciences, 65(3), 649–658.

    Article  Google Scholar 

  • Zhang, C., Ren, H., Dai, X., Qin, Q., Li, J., Zhang, T., & Sun, Y. (2019). Spectral characteristics of copper-stressed vegetation leaves and further understanding of the copper stress vegetation index. International Journal of Remote Sensing, 40(12), 4473–4488.

    Article  Google Scholar 

  • Zhang, C., Ren, H., Qin, Q., & Ersoy, O. K. (2017). A new narrow band vegetation index for characterizing the degree of vegetation stress due to copper: the copper stress vegetation index (CSVI). Remote Sensing Letters, 8(6), 576–585.

    Article  Google Scholar 

  • Zhang, G. P., Zhao, H. L., Zhao, X. B., Li, J. G., Shen, Z., & S., & Zhang, Y. . (2014). Application of Soil Geochemical Survey in Exploration of the Gill Vishak Deposit, Western Junggar, Xinjiang, China. Bulletin in Mineralogy, Petrology and Geochemistry, 33(4), 472–476.(In Chinese with English abstract).

    Google Scholar 

  • Zhang, Z., Liu, M., Liu, X., & Zhou, G. (2018). A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors, 18(7), 2172.

    Article  Google Scholar 

  • Zhao, Y. S. (2013). Principles and methods of remote sensing application analysis. Beijing: Science Press.

    Google Scholar 

  • Zhou, C., Wang, D. M., Chen, S. B., Liu, Y. L., & Wang, M. C. (2015). Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science—Journal of China University of Geosciences, 40(8), 1365–1370. (In Chinese with English abstract).

    Google Scholar 

  • Zhou, W. H., Zhang, J. J., Zou, M. M., Liu, X. Q., Du, X. L., Wang, Q., et al. (2019). Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing. Environmental Science and Pollution Research, 26(2), 1848–1856.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Tianchi doctoral plan (2019000078), the "one belt and one road" team of the Chinese Academy of Sciences (2017-XBZG-BR-002), Young Scholars Fund (41602339), The opening foundation of key laboratory in Xinjiang Uygur Autonomous Region (2018D04025). Thanks for the help of the “Xinjiang Laboratory of Mineral Resources and Digital Geology, CAS, Urumqi 830011, China” in data testing in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefa Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Zhou, K., Ding, R. et al. Absorption and Aggregation Characteristics and Changes in the Reflectance Spectrum of an Arid Desert Plant under Gold, Copper, Zinc and Nickel Stress. Nat Resour Res 30, 2715–2731 (2021). https://doi.org/10.1007/s11053-021-09825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09825-5

Keywords

Navigation