Skip to main content
Log in

Optimization of the lowest eigenvalue of a soft quantum ring

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the self-adjoint two-dimensional Schrödinger operator \({{\mathsf {H}}}_{\mu }\) associated with the differential expression \(-\Delta -\mu \) describing a particle exposed to an attractive interaction given by a measure \(\mu \) supported in a closed curvilinear strip and having fixed transversal one-dimensional profile measure \(\mu _\bot \). This operator has nonempty negative discrete spectrum, and we obtain two optimization results for its lowest eigenvalue. For the first one, we fix \(\mu _\bot \) and maximize the lowest eigenvalue with respect to shape of the curvilinear strip; the optimizer in the first problem turns out to be the annulus. We also generalize this result to the situation which involves an additional perturbation of \({{\mathsf {H}}}_{\mu }\) in the form of a positive multiple of the characteristic function of the domain surrounded by the curvilinear strip. Secondly, we fix the shape of the curvilinear strip and minimize the lowest eigenvalue with respect to variation of \(\mu _\bot \), under the constraint that the total profile measure \(\AA >0\) is fixed. The optimizer in this problem is \(\mu _\bot \) given by the product of \(\alpha \) and the Dirac \(\delta \)-function supported at an optimal position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antunes, P.R.S., Freitas, P., Krejčiřík, D.: Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10, 357–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baernstein, I.A.: Symmetrization in Analysis. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  3. Bandle, C.: Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics. Pitman, London (1980)

    MATH  Google Scholar 

  4. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: Approximation of Schrödinger operators with \(\delta \)-interactions supported on hypersurfaces. Math. Nachr. 290, 1215–1248 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \)- and \(\delta ^{\prime }\)-interactions on Lipschitz surfaces and chromatic numbers of associated partitions. Rev. Math. Phys. 26, 1450015 (2014). 43 pp

    MathSciNet  MATH  Google Scholar 

  6. Behrndt, J., Langer, M., Lotoreichik, V.: Schrödinger operators with \(\delta \) and \(\delta ^{\prime }\)-potentials supported on hypersurfaces. Ann. Henri Poincaré 14, 385–423 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Brasche, J., Exner, P., Kuperin, Y., Šeba, P.: Schrödinger operators with singular interactions. J. Math. Anal. Appl. 184, 112–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brasche, J.F., Figari, R., Teta, A.: Singular Schrödinger operators as limits point interaction Hamiltonians. Potential Anal. 8, 163–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: A sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. IX. Ser., Rend. Lincei Mat. Appl. 30, 665–676 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delfour, M., Zolésio, J.-P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dittrich, J., Exner, P., Kühn, C., Pankrashkin, K.: On eigenvalue asymptotics for strong \(\delta \)-interactions supported by surfaces with boundaries. Asymptot. Anal. 97, 1–25 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Exner, P.: Leaky quantum graphs: a review. In: Analysis on Graphs and Its Applications, Proceedings of Symposium Pure Mathematics, vol. 77, AMS. Providence, RI, pp. 523–564 (2008)

  13. Exner, P.: Spectral properties of soft quantum waveguides. J. Phys. A Math. Theor. 53, 355302 (2020)

    Article  MathSciNet  Google Scholar 

  14. Exner, P., Harrell, E.M., Loss, M.: Inequalities for means of chords, with application to isoperimetric problems. Lett. Math. Phys. 75, 225–233 (2006). (addendum 77 (2006), 219)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Exner, P., Kovařík, H.: Quantum Waveguides. Theoretical and Mathematical Physics. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  16. Exner, P., Lotoreichik, V.: Spectral optimization for Robin Laplacian on domains admitting parallel coordinates. arXiv:2001.02718, to appear in Math. Nachr

  17. Exner, P., Tater, M.: Spectra of soft ring graphs. Waves Random Media 14, 47–60 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fiala, F.: Les problèmes des isopérimetres sur les surfaces ouvertes á courbure positive. Commun. Math. Helv. 13, 293–346 (1941)

    Article  MATH  Google Scholar 

  19. Freitas, P., Krejčiřík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golovaty, Y.: 2D Schrödinger operators with singular potentials concentrated near curves. arXiv:2007.10761

  21. Hartman, P.: Geodesic parallel coordinates in the large. Am. J. Math. 86, 705–727 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)

    Book  Google Scholar 

  23. Khalile, M., Lotoreichik, V.: Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones. arXiv:1909.10842

  24. Kondej, S., Krejčiřík, D., Kříž, J. Soft quantum waveguides with an explicit cut-locus. arXiv:2007.10946

  25. Kondej, S., Lotoreichik, V.: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure. J. Math. Anal. Appl. 420, 1416–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set. J. Convex Anal. 25, 319–337 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions. Potential Anal. 52, 601–614 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, J.M.: Introduction to Riemannian Manifolds, 2nd edn. Springer International Publishing, Cham (2018)

    Book  MATH  Google Scholar 

  29. Lieb, E., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  30. Lotoreichik, V.: Spectral isoperimetric inequality for the \(\delta ^{\prime }\)-interaction on a contour. In: Michelangeli, A. (eds.) Mathematical challenges of zero-range physics. Springer INdAM Series, vol 42, pp 215–227. Springer, Cham, (2021)

  31. Lotoreichik, V., Ourmières-Bonafos, T.: On the bound states of Schrödinger operators with \(\delta \)-interactions on conical surfaces. Commun. Partial Differ. Equ. 41, 999–1028 (2016)

    MATH  Google Scholar 

  32. Mantile, A., Posilicano, A.: Asymptotic completeness and S-matrix for singular perturbations. J. Math. Pures Appl. 130, 36–67 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malý, J., Swanson, D., Ziemer, W.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355, 477–492 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Ourmières-Bonafos, T., Pankrashkin, K., Pizzichillo, F.: Spectral asymptotics for \(\delta \)-interactions on sharp cones. J. Math. Anal. Appl. 458, 566–589 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Savo, A.: Lower bounds for the nodal length of eigenfunctions of the Laplacian. Ann. Glob. Anal. Geom. 16, 133–151 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simon, B.: The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97, 279–288 (1976)

    Article  ADS  MATH  Google Scholar 

  38. Talenti, G.: Estimates for Eigenvalues of Sturm–Liouville Problems, General Inequalities, 4 (Oberwolfach, 1983), International Schriftenreihe Numerical Mathematics, vol. 71, pp. 341–350. Birkhäuser, Basel (1984)

    Google Scholar 

  39. Vogt, H.: A lower bound on the first spectral gap of Schrödinger operators with Kato class measures. Ann. Henri Poincaré 10, 395–414 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil 1. Teubner, Stuttgart (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Czech Science Foundation Project 21-07129S and by the EU Project CZ.02.1.01/0.0/0.0/16_019/0000778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lotoreichik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Traces on \(\Sigma _t\) and the lowest eigenvalue of \({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\)

Appendix A: Traces on \(\Sigma _t\) and the lowest eigenvalue of \({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\)

The first auxiliary result concerns a t-independent upper bound on \(\Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)}\) for an \(H^1\)-function u in terms of the \(L^2\)-norms of u itself and its gradient.

Lemma A.1

Let the curve \(\Sigma _t\) be as in (2.6). For any \(\varepsilon > 0\), there exists a constant \(C(\varepsilon ) > 0\) such that for any \(t\in {{\mathcal {I}}}\) the following inequality

$$\begin{aligned} \Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)} \le \varepsilon \Vert \nabla u\Vert ^2_{L^2({{\mathbb {R}}}^2;{{\mathbb {C}}}^2)} + C(\varepsilon )\Vert u\Vert ^2_{L^2({{\mathbb {R}}}^2)} \end{aligned}$$

holds for all \(u\in H^1({{\mathbb {R}}}^2)\). As a consequence, there is a constant \(c > 0\) such that the inequality \(\Vert u|_{\Sigma _t}\Vert _{L^2(\Sigma _t)}^2\le c\Vert u\Vert _{H^1({{\mathbb {R}}}^2)}^2\) holds for any \(u\in H^1({{\mathbb {R}}}^2)\) and all \(t\in {{\mathcal {I}}}\).

Proof

In view of the density of \(C^\infty _0({{\mathbb {R}}}^2)\) in \(H^1({{\mathbb {R}}}^2)\), it suffices to check the inequality for \(C^\infty _0\)-functions. For any \(u\in C^\infty _0({{\mathbb {R}}}^2)\), \(s\in [0,L)\), and \(t\in {{\mathcal {I}}}\) we get using the fundamental theorem of calculus the following estimate:

$$\begin{aligned} \begin{aligned} {{\mathcal {D}}}_u(s,t)&:= \left| |u(\sigma (s)+t\nu (s))|^2 - |u(\sigma (s))|^2\right| \\&= \left| \int _0^1 \frac{{{\mathsf {d}}}}{{{\mathsf {d}}}r} (|u|^2(\sigma (s)+rt\nu (s))\,{{\mathsf {d}}}r\right| \\&\le \int _0^1 |\langle \nabla (|u|^2)(\sigma (s)+rt\nu (s)),t\nu (s)\rangle |\,{{\mathsf {d}}}r \\&\le 2|t| \int _0^1 \big |(|u|\cdot \nabla |u|) (\sigma (s)+rt\nu (s))\big |\,{{\mathsf {d}}}r.\\ \end{aligned} \end{aligned}$$
(A.1)

Let \({{\hat{\varepsilon }}} > 0\) be arbitrary. Applying the inequality \({{\hat{\varepsilon }}} a^2+{\hat{\varepsilon }}^{-1}b^2 \ge 2ab\) with \(a,b > 0\), we can further estimate \({{\mathcal {D}}}_u(s,t)\) as follows:

$$\begin{aligned} \begin{aligned} {{\mathcal {D}}}_u(s,t)&\le |t| \int _0^1 \left( {{\hat{\varepsilon }}}\big |\nabla |u| (\sigma (s)+rt\nu (s))\big |^2 + {{\hat{\varepsilon }}}^{-1} \big |u (\sigma (s)+rt\nu (s))\big |^2\right) {{\mathsf {d}}}r\\&\le \int _{-d_-}^{d_+} \left( {{\hat{\varepsilon }}}\big |\nabla u (\sigma (s)+q\nu (s))\big |^2 + {{\hat{\varepsilon }}}^{-1} \big |u (\sigma (s)+q\nu (s))\big |^2\right) {{\mathsf {d}}}q, \end{aligned} \end{aligned}$$
(A.2)

where the substitution \(q = rt\) was used, the interval of integration was enlarged and the diamagnetic inequality [29, Thm. 7.21] was applied.

By the trace theorem [34, Thm. 3.38] (see also [5, Lem. 2.6]) for any \({\tilde{\varepsilon }} > 0\), there exists \({\tilde{C}}({\tilde{\varepsilon }}) > 0\) such that

$$\begin{aligned} \Vert u|_\Sigma \Vert ^2_{L^2(\Sigma )} = \int _0^L |u(\sigma (s))|^2{{\mathsf {d}}}s \le {\tilde{\varepsilon }}\Vert \nabla u\Vert ^2_{L^2({{\mathbb {R}}}^2;{{\mathbb {C}}}^2)} + {\tilde{C}}({\tilde{\varepsilon }})\Vert u\Vert ^2_{L^2({{\mathbb {R}}}^2)} \end{aligned}$$
(A.3)

for any \(u\in C^\infty _0({{\mathbb {R}}}^2)\). In view of (2.3), there exist constants \(c_+> c_- > 0\) such that

$$\begin{aligned} 1+\kappa (s)t\in [c_-, c_+]\qquad \text {for all}\, s\in [0,L),\, t\in {{\mathcal {I}}}. \end{aligned}$$

In this way, we obtain the following simple estimate:

$$\begin{aligned} \Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)}= & {} \int _0^L |u(\sigma (s)+t\nu (s))|^2(1+\kappa (s)t)\,{{\mathsf {d}}}s \nonumber \\\le & {} c_+ \int _0^L |u(\sigma (s)+t\nu (s))|^2\,{{\mathsf {d}}}s. \end{aligned}$$
(A.4)

Furthermore, combining estimates (A.2), (A.3), and (A.4), we end up with

$$\begin{aligned} \begin{aligned} \Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)}&\le c_+ \int _0^L \left( |u(\sigma (s))|^2+ {{\mathcal {D}}}_u(s,t)\right) {{\mathsf {d}}}s\\&\le c_+{{\tilde{\varepsilon }}}\Vert \nabla u\Vert ^2_{L^2({{\mathbb {R}}}^2;{{\mathbb {C}}}^2)} + c_+ {\tilde{C}}({{\tilde{\varepsilon }}})\Vert u\Vert ^2_{L^2({{\mathbb {R}}}^2)}\\&\quad + \frac{{{\hat{\varepsilon }}} c_+}{c_-}\int _0^L\int _{-d_-}^{d_+} \big |\nabla u (\sigma (s)+q\nu (s))\big |^2(1+\kappa (s)q)\,{{\mathsf {d}}}q{{\mathsf {d}}}s\\&\quad + \frac{c_+}{{{\hat{\varepsilon }}} c_-} \int _0^L\int _{-d_-}^{d_+} \big |u (\sigma (s)+q\nu (s))\big |^2(1+\kappa (s)q)\,{{\mathsf {d}}}q{{\mathsf {d}}}s\\&\le \left( c_+{{\tilde{\varepsilon }}} + \frac{c_+{{\hat{\varepsilon }}}}{c_-}\right) \Vert \nabla u\Vert ^2_{L^2({{\mathbb {R}}}^2;{{\mathbb {C}}}^2)} + \left( c_+ {\tilde{C}}({{\tilde{\varepsilon }}}) + \frac{c_+}{c_-{{\hat{\varepsilon }}}}\right) \Vert u\Vert ^2_{L^2({{\mathbb {R}}}^2)}. \end{aligned} \end{aligned}$$

By choosing \({{\tilde{\varepsilon }}} >0\) and \({{\hat{\varepsilon }}}>0\) such that \(\varepsilon =c_+{{\tilde{\varepsilon }}} + \frac{c_+{{\hat{\varepsilon }}}}{c_-}\), we get the sought claim. \(\square \)

In the next lemma, we prove that the function \({{\mathcal {I}}}\ni t\mapsto \Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)}\) is Hölder continuous with exponent \(\frac{1}{2}\) for any \(u\in H^1({{\mathbb {R}}}^2)\).

Lemma A.2

There exists a constant \(c >0\) such that

$$\begin{aligned} \left| \Vert u|_{\Sigma _{t_2}}\Vert _{L^2(\Sigma _{t_2})}^2 - \Vert u|_{\Sigma _{t_1}}\Vert ^2_{L^2(\Sigma _{t_1})}\right| \le c|t_1 - t_2|^{1/2}\Vert u\Vert ^2_{H^1({{\mathbb {R}}}^2)} \end{aligned}$$

holds for all \(u\in H^1({{\mathbb {R}}}^2)\) and for any \(t_1,t_2\in {{\mathcal {I}}}\).

Proof

Throughout the proof \(c > 0\) denotes a generic positive constant, which varies from line to line. In view of the density of \(C^\infty _0({{\mathbb {R}}}^2)\) in \(H^1({{\mathbb {R}}}^2)\), it suffices to check the inequality for \(C^\infty _0\)-functions. Without loss of generality, we may prove the claim only for the case that \(t_1 = 0\) and that \(t_2 = t \in (0,d_+)\). In this case we need to show that

$$\begin{aligned} {{\mathcal {S}}}_u(t) := \left| \Vert u|_{\Sigma _{t}}\Vert _{L^2(\Sigma _{t})}^2 - \Vert u|_{\Sigma }\Vert ^2_{L^2(\Sigma )}\right| \le ct^{1/2}\Vert u\Vert ^2_{H^1({{\mathbb {R}}}^2)}. \end{aligned}$$

By elementary means we obtain the bound

$$\begin{aligned} \begin{aligned} {{\mathcal {S}}}_u(t)&= \left| \int _0^L|u(\sigma (s)+t\nu (s))|^2(1+\kappa (s)t)\,{{\mathsf {d}}}s - \int _0^L|u(\sigma (s))|^2\,{{\mathsf {d}}}s \right| \\&\le ct\int _0^L|u(\sigma (s)+t\nu (s))|^2\,{{\mathsf {d}}}s + \int _0^L\left| |u(\sigma (s)) + t\nu (s))|^2 - |u(\sigma (s))|^2\right| {{\mathsf {d}}}s \end{aligned} \end{aligned}$$

Using Lemma A.1 and the estimate of (A.1), and taking (2.3) into account, we find

$$\begin{aligned} \begin{aligned} {{\mathcal {S}}}_u(t)&\le ct \Vert u|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)} +2\int _0^L\int _0^t|(|u|\cdot \nabla |u|)(\sigma (s)+q\nu (s))|\,{{\mathsf {d}}}q\,{{\mathsf {d}}}s\\&\le ct^{1/2}\Vert u\Vert ^2_{H^1({{\mathbb {R}}}^2)} + 2\int _0^L\int _0^t|(|u|\cdot \nabla |u|)(\sigma (s)+q\nu (s))|\,{{\mathsf {d}}}q\,{{\mathsf {d}}}s. \end{aligned} \end{aligned}$$
(A.5)

Furthermore, applying Cauchy–Schwarz inequality, diamagnetic inequality, and Lemma A.1 again, we get

$$\begin{aligned} \begin{aligned}&\int _0^L\int _0^t|(|u|\cdot \nabla |u|)(\sigma (s)+q\nu (s))|\,{{\mathsf {d}}}q\,{{\mathsf {d}}}s\\&\quad \le \left( \int _0^L\int _0^t|\nabla u(\sigma (s)+q\nu (s))|^2\,{{\mathsf {d}}}q{{\mathsf {d}}}s\right) ^{1/2} \left( \int _0^L\int _0^t|u(\sigma (s)+q\nu (s))|^2\,{{\mathsf {d}}}q{{\mathsf {d}}}s\right) ^{1/2}\\&\quad \le c\left( \int _0^L\int _0^t|\nabla u(\sigma (s)+q\nu (s))|^2(1+\kappa (s)q)\,{{\mathsf {d}}}q{{\mathsf {d}}}s\right) ^{1/2} \left( \int _0^t\Vert u|_{\Sigma _q}\Vert _{L^2(\Sigma _q)}^2\,{{\mathsf {d}}}q\right) ^{1/2}\\&\quad \le ct^{1/2}\Vert \nabla u\Vert _{L^2({{\mathbb {R}}}^2;{{\mathbb {C}}}^2)}\Vert u\Vert _{H^1({{\mathbb {R}}}^2)} \le ct^{1/2}\Vert u\Vert ^2_{H^1({{\mathbb {R}}}^2)}. \end{aligned} \end{aligned}$$

Combining the last estimate with (A.5), we arrive at the claim. \(\square \)

The purpose of the last lemma of the appendix is to establish the continuity of the lowest eigenvalue of \({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\) with respect to t.

Lemma A.3

Let the curves \(\Sigma _t\) be as in (2.6) and the number \(\AA > 0\) be fixed. The operator-valued function

$$\begin{aligned} {{\mathcal {I}}}\ni t\mapsto {{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}} \end{aligned}$$
(A.6)

is continuous in the norm-resolvent topology and uniformly lower-semibounded, and as a consequence, the function \({{\mathcal {I}}}\ni t\mapsto \lambda _1(\alpha \delta _{\Sigma _t})\) is continuous.

Proof

Throughout the proof \(c > 0\) again denotes a generic positive constant, which varies from line to line. Lemma A.1 in combination with the expression for the form (2.10) referring to \(\mu = \alpha \delta _{\Sigma _t}\) shows that operators \({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\), \(t\in {{\mathcal {I}}}\), are uniformly bounded from below by some constant \(\lambda _1< 0\). Without loss of generality, it suffices to prove that \({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\) converges in the norm resolvent sense to \({{\mathsf {H}}}_{\alpha \delta _\Sigma }\) as \(t\rightarrow 0\). The norm resolvent continuity of \({{\mathcal {I}}}\ni t\mapsto {{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}\) at the other points of the interval \({{\mathcal {I}}}\) can be proven analogously.

We fix \(\lambda _0 < \lambda _1\), use the notation \({{\mathsf {R}}}_t := ({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}}-\lambda _0)^{-1}\), \(t\in {{\mathcal {I}}}\) and claim that there is a constant \(c > 0\) such that

$$\begin{aligned} \Vert {{\mathsf {R}}}_t - {{\mathsf {R}}}_0\Vert \le c|t|^{1/2}. \end{aligned}$$
(A.7)

In fact, first we note that

$$\begin{aligned} \begin{aligned} \Vert {{\mathsf {R}}}_t - {{\mathsf {R}}}_0\Vert&= \sup _{\Vert u\Vert , \Vert v\Vert = 1} \big |(({{\mathsf {R}}}_t - {{\mathsf {R}}}_0)u,v)_{L^2({{\mathbb {R}}}^2)}\big |\\&= \sup _{\Vert u\Vert , \Vert v\Vert = 1} \big |({{\mathsf {R}}}_t u,({{\mathsf {H}}}_{\alpha \delta _\Sigma } - \lambda _0) {{\mathsf {R}}}_0v)_{L^2({{\mathbb {R}}}^2)}- (({{\mathsf {H}}}_{\alpha \delta _{\Sigma _t}} - \lambda _0){{\mathsf {R}}}_tu, {{\mathsf {R}}}_0v)_{L^2({{\mathbb {R}}}^2)} \big |\\&= \sup _{\Vert u\Vert , \Vert v\Vert = 1} \big | {\mathfrak {h}}_{\alpha \delta _{\Sigma }}[{{\mathsf {R}}}_t u,{{\mathsf {R}}}_0v]- {\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}[{{\mathsf {R}}}_t u,{{\mathsf {R}}}_0v] \big |. \end{aligned} \end{aligned}$$

The estimate (A.7) would follow if we prove that

$$\begin{aligned} \big | {\mathfrak {h}}_{\alpha \delta _{\Sigma }}[f,g]- {\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}[f,g] \big |\le c|t|^{1/2}\left( \Vert f\Vert ^2_{H^1({{\mathbb {R}}}^2)} +\Vert g\Vert ^2_{H^1({{\mathbb {R}}}^2)} \right) ,\quad f,g\in H^1({{\mathbb {R}}}^2),\nonumber \\ \end{aligned}$$
(A.8)

since with the choice \(f = {{\mathsf {R}}}_t u\) and \(g = {{\mathsf {R}}}_0v\) the inequality (A.8) together with Lemma A.1 yields the existence of constants \(c_1 >0\) and \(c_2 >-c_1\lambda _0\) such that

$$\begin{aligned} \begin{aligned}&\big | {\mathfrak {h}}_{\alpha \delta _{\Sigma }}[{{\mathsf {R}}}_t u,{{\mathsf {R}}}_0v]- {\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}[{{\mathsf {R}}}_t u,{{\mathsf {R}}}_0v] \big |\\&\quad \le c|t|^{1/2} \left( c_1{\mathfrak {h}}_{\alpha \delta _{\Sigma }}[{{\mathsf {R}}}_0 v] + c_2\Vert {{\mathsf {R}}}_0 v\Vert ^2_{L^2({{\mathbb {R}}}^2)} + c_1{\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}[{{\mathsf {R}}}_t u] + c_2\Vert {{\mathsf {R}}}_t u\Vert ^2_{L^2({{\mathbb {R}}}^2)} \right) \\&\quad = c|t|^{1/2}\left[ c_1({{\mathsf {R}}}_0v,v)_{L^2({{\mathbb {R}}}^2)} + c_1({{\mathsf {R}}}_tu,u)_{L^2({{\mathbb {R}}}^2)} \right. \\&\qquad \left. +\, (c_1\lambda _0 + c_2)\left( \Vert {{\mathsf {R}}}_0v\Vert ^2_{L^2({{\mathbb {R}}}^2)} +\Vert {{\mathsf {R}}}_tu\Vert ^2_{L^2({{\mathbb {R}}}^2)}\right) \right] \\&\quad \le c|t|^{1/2}\left( \Vert u\Vert ^2_{L^2({{\mathbb {R}}}^2)} + \Vert v\Vert ^2_{L^2({{\mathbb {R}}}^2)}\right) , \end{aligned} \end{aligned}$$

where we used that \(\Vert {{\mathsf {R}}}_t\Vert \le \frac{1}{\lambda _1-\lambda _0}\) holds for all \(t\in {{\mathcal {I}}}\). In view of the polarization identity, it is enough to check (A.8) for \(f = g\). By definition of the form \({\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}\) in (2.10) with \(\mu =\alpha \delta _{\Sigma _t}\), we get

$$\begin{aligned} \begin{aligned} \big |{\mathfrak {h}}_{\alpha \delta _{\Sigma _t}}[f] - {\mathfrak {h}}_{\alpha \delta _\Sigma }[f]\big | = \alpha \left| \Vert f|_{\Sigma _t}\Vert ^2_{L^2(\Sigma _t)}- \Vert f|_{\Sigma }\Vert ^2_{L^2(\Sigma )}\right| \le c|t|^{1/2}\Vert f\Vert _{H^1({{\mathbb {R}}}^2)}^2, \end{aligned} \end{aligned}$$

where Lemma A.2 is applied in the last step. The continuity of the lowest eigenvalue \({{\mathcal {I}}}\ni t\mapsto \lambda _1(\alpha \delta _{\Sigma _t})\) follows from the norm resolvent continuity of the operator-valued function in (A.6) in combination with the spectral convergence result from [40, Satz 9.24]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exner, P., Lotoreichik, V. Optimization of the lowest eigenvalue of a soft quantum ring. Lett Math Phys 111, 28 (2021). https://doi.org/10.1007/s11005-021-01369-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01369-2

Keywords

Mathematics Subject Classification

Navigation