Skip to main content
Log in

Phase developments in Pb(Zn[Ta,Nb,W])O3-PbTiO3 ternary ceramic compositions

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The hard-to-synthesize lead-based zinc-bearing trio of Pb(Zn1/3Ta2/3)O3, Pb(Zn1/3Nb2/3)O3, and Pb(Zn1/2W1/2)O3 (PZT, PZN, and PZW) were investigated to understand their structural stability and phase formation. A structure field map is used to discuss the capability of the trio compositions and combinations thereof, to form the perovskite structure, with PbTiO3(PT) introduced as a perovskite stabilizer. We identified the potential omission of the (111) reflections in two International Centre for Diffraction Data (ICDD) sets of a complex-rutile structure, [(Zn1/3Ta2/3)1/2Ti1/2]O2 and [(Zn1/3Nb2/3)1/2Ti1/2]O2, and suggest that the intensities of the latter compound need to be re-examined. The perovskite structure started to develop at different fractions of PT, depending upon the species of the trio: PZN required the smallest amount of PT (< 20 mol%), whereas PZW required the greatest (≤ 80 mol%). The perovskite-stable composition area was the widest in PZT-PZN-PT and narrowest in PZW-PZT-PT, indicating the comparative ease/difficulty of perovskite formation among the trio compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys.-Tech. Phys. 3(7), 1380–1382 (1958)

    CAS  Google Scholar 

  2. G.A. Smolenskii, A.I. Agranovskaya, S.N. Popov, Sov. Phys.-Solid State 1(1), 147–148 (1959)

    Google Scholar 

  3. G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys.-Solid State 1(10), 1429–1437 (1960)

    Google Scholar 

  4. W.A. Bonner, L.G. VanUitert, Mater. Res. Bull. 2(1), 131–134 (1967)

    Article  CAS  Google Scholar 

  5. G.A. Smolenskii, J. Phys. Soc. Jpn. 28(suppl), 26–37 (1970)

  6. N. Setter, L.E. Cross, J. Crystal Growth 50(2), 555–556 (1980)

    Article  CAS  Google Scholar 

  7. S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17(10), 1245–1250 (1982)

    Article  CAS  Google Scholar 

  8. S. Nomura, T. Takahashi, Y. Yokomizo, J. Phys. Soc. Jpn. 27(1), 262 (1969)

    Article  CAS  Google Scholar 

  9. Y. Yokomizo, S. Nomura, J. Phys. Soc. Jpn. 28(suppl), 150–152 (1970)

  10. Y. Yokomizo, T. Takahashi, S. Nomura, J. Phys. Soc. Jpn. 28(5), 1278–1284 (1970)

    Article  CAS  Google Scholar 

  11. S. Nomura, H. Arima, Jpn. J. Appl. Phys. 11(3), 358–364 (1972)

    Article  CAS  Google Scholar 

  12. D.-H. Lee, N.-K. Kim, Mater. Lett. 34(3–6), 299–304 (1998)

    Article  CAS  Google Scholar 

  13. M.-C. Chae, N.-K. Kim, J.-J. Kim, S.-H. Cho, J. Mater. Sci. 33(5), 1343–1348 (1998)

    Article  CAS  Google Scholar 

  14. M.-C. Chae, N.-K. Kim, J.-J. Kim, S.H. Cho, Ferroelectrics 211(1–4), 25–39 (1998)

    Article  CAS  Google Scholar 

  15. B.-Y. Ahn, N.-K. Kim, J. Am. Ceram. Soc. 83(7), 1720–1726 (2000)

    Article  CAS  Google Scholar 

  16. B.-H. Lee, N.-K. Kim, Mater. Lett. 62(1), 137–139 (2008)

    Article  CAS  Google Scholar 

  17. B.-Y. Ahn, T.-K. Park, N.-K. Kim, Ceram. Int. 37(2), 549–553 (2011)

    Article  CAS  Google Scholar 

  18. V.A. Bokov, I.E. Myl’nikova, Sov. Phys.-Solid State 2(11), 2428–2432 (1961)

    Google Scholar 

  19. H.M. Jang, S.H. Oh, J.H. Moon, J. Am. Ceram. Soc. 75(1), 82–88 (1992)

    Article  CAS  Google Scholar 

  20. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, M. Koizumi, J. Am. Ceram. Soc. 52(9), 516–517 (1969)

    Article  CAS  Google Scholar 

  21. J. Wang, D. Wan, J. Xue, W.B. Ng, J. Am. Ceram. Soc. 82(2), 477–479 (1999)

    Article  CAS  Google Scholar 

  22. J. Wang, J. Xue, D. Wan, Solid State Ionics 127(1–2), 169–175 (2000)

    Article  CAS  Google Scholar 

  23. B.-Y. Ahn, N.-K. Kim, Mater. Res. Bull. 35(10), 1677–1687 (2000)

    Article  CAS  Google Scholar 

  24. M.-C. Chae, S.-M. Lim, N.-K. Kim, Ferroelectrics 242(1–4), 25–35 (2000)

    Article  CAS  Google Scholar 

  25. B.-Y. Ahn, N.-K. Kim, J. Mater. Sci. 37(21), 4697–4701 (2002)

    Article  CAS  Google Scholar 

  26. J.-S. Kim, N.-K. Kim, H. Kim, J. Am. Ceram. Soc. 86(6), 929–933 (2003)

    Article  CAS  Google Scholar 

  27. J.-A. Lee, N.-K. Kim, Mater. Lett. 59(1), 32–35 (2005)

    Article  CAS  Google Scholar 

  28. J.-A. Lee, N.-K. Kim, Mater. Res. Bull. 40(10), 1839–1846 (2005)

    Article  CAS  Google Scholar 

  29. K.-H. Seo, B.-H. Lee, N.-K. Kim, J. Ko, J. Mater. Sci. 40(23), 6151–6156 (2005)

    Article  CAS  Google Scholar 

  30. W.-J. Lee, N.-K. Kim, J. Mater. Sci. 43(10), 3608–3611 (2008)

    Article  CAS  Google Scholar 

  31. W.-J. Lee, J.-S. Kim, N.-K. Kim, J. Eur. Ceram. Soc. 27(16), 4473–4478 (2007)

    Article  CAS  Google Scholar 

  32. S.-H. Cho, B.-H. Lee, N.-K. Kim, Ceram. Int. 35(4), 1611–1616 (2009)

    Article  CAS  Google Scholar 

  33. A. Halliyal, U. Kumar, R.E. Newnham, L.E. Cross, Am. Ceram. Soc. Bull. 66(4), 671–676 (1987)

    CAS  Google Scholar 

  34. T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66(4), 704–711 (1987)

    CAS  Google Scholar 

  35. C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, J. Mater. Res. 5(4), 829–834 (1990)

    Article  CAS  Google Scholar 

  36. N. Wakiya, K. Shinozaki, N. Mizutani, J. Am. Ceram. Soc. 80(12), 3217–3220 (1997)

    Article  CAS  Google Scholar 

  37. L. Zhou, P.M. Vilarinho, J.L. Baptista, Mater. Res. Bull. 29(11), 1193–1201 (1994)

    Article  CAS  Google Scholar 

  38. B.-H. Lee, N.-K. Kim, J.-J. Kim, S.-H. Cho, Ferroelectrics 211(1–4), 233–247 (1998)

    Article  CAS  Google Scholar 

  39. S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19(2), 155–163 (1999)

    Article  CAS  Google Scholar 

  40. R.D. Shannon, Acta Crystallogr. A32(5), 751–767 (1976)

    Article  CAS  Google Scholar 

  41. W.F. Smith, J. Hashemi, Foundations of materials science and engineering, 4th edn. (McGraw-Hill, Seoul, 2008), Fig. 2.9

Download references

Acknowledgements

This study was supported by the Kyungpook National University Research Fund, 2018-21. The authors also express gratitude to D.-H. Seo, who was involved in the early stage of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Kyoung Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BH., Kim, NK. Phase developments in Pb(Zn[Ta,Nb,W])O3-PbTiO3 ternary ceramic compositions. J Electroceram 45, 111–118 (2020). https://doi.org/10.1007/s10832-021-00230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00230-1

Keywords

Navigation