Skip to main content
Log in

Accurate modeling and simulation of solar photovoltaic panels with simulink-MATLAB

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A unique procedure to model and simulate a 36-cell-50 W solar panel using analytical methods has been developed. The generalized expression of solar cell equivalent circuit was validated and implemented, making no influential assumptions, under Simulink/MATLAB R2020a environment. The approach is based on extracting all the needed parameters by exploiting the available parameters from the data sheets of commercial PV panels and by estimating the slopes at both short-circuit and open-circuit conditions of the current–voltage characteristic, usually provided by most solar panels manufacturers under standard test conditions (STC). The effects of solar irradiance and temperature were both considered in the modeling. A system of coupled nonlinear simultaneous equations for diode saturation current, diode ideality factor, and series and shunt resistances has been solved. To accurately model the PV module used in our simulation and analysis, the needed temperature- dependent parameters have been extracted for the first time. At STC irradiance of 1000 W/m2, the modeled I-V curve was found identical to the experimental one which is provided by the solar panel manufacturer. The maximum power output of the PV module increases from 8.75 W to 50 W when irradiance varies from 200 W/m2 to 1000 W/m2 at STC temperature. At temperatures higher than STC and for the same solar irradiance, the power output of the PV module came down about 14.5% only when the operating temperature reached a value of 65 °C. However, as temperature is below STC, the power output went up of about 7.4% beyond the maximum power of the rated PV panel. The calculated power temperature coefficient was about −0.39%/ oC which is quite close to the one provided by the solar panel manufacturer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References:

  1. Adamovic, N., Zimmermann, A., Caviasca, A., Harboe, R., Ibanez, F.: Custom designed photovoltaic modules for PIPV and BIPV applications. Journal of Renewable and Sustainable Energy 9, 021202 (2017)

    Article  Google Scholar 

  2. Binetti, S., Garattini, P., Mereu, R., Le Donne, A., Marchionna, S., Gasparotto, A., Meschia, M., Pinus, I., Acciarri, M.: Fabricating Cu(In, Ga)Se2 solar cells on flexible substrates by a new roll-to-roll deposition system suitable for industrial applications. Semicond. Sci. Technol. 30, 105006 (2015)

    Article  Google Scholar 

  3. Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., Mülle, J.: Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manage. 268, 110730 (2020)

    Article  Google Scholar 

  4. Cossu, M., Yano, A., Solinas, S., Deligios, P.A., Tiloca, M.T., Cossu, A., Ledda, L.P., A., : Agricultural sustainability estimation of the European photovoltaic greenhouses. Eur. J. Agron. 118, 126074 (2020)

    Article  Google Scholar 

  5. Jelle, B.P., Breivik, C.: The path to the building integrated photovoltaics of tomorrow. Energy Procedia 20, 78–87 (2012)

    Article  Google Scholar 

  6. B. P. Jelle C. Breivik, and H. D. Røkenes, “Building integrated photovoltaic products: A state-of-the-art review and future research opportunities,” Sol. Energy Mater. Sol. Cells 100, 69–96 (2012).

  7. Chirilă, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Kranz, L., Perrenoud, J., Seyrling, S., Verma, R., Nishiwaki, S., Romanyuk, Y.E., Bilger, G., Tiwari, A.N.: Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011)

    Article  Google Scholar 

  8. Jean, J., Brown, P.R., Jaffe, R.L., Buonassisi, T., Bulović, V.: Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200 (2015)

    Article  Google Scholar 

  9. Hofer, J., Groenewolt, A., Jayathissa, P., Nagy, Z., Schlueter, A.: Parametric analysis and systems design of dynamic photovoltaic shading modules. Energy Sci. Eng. 4(2), 134–152 (2016)

    Article  Google Scholar 

  10. Dolara, A., Lazaroiu, G.C., Leva, S., Manzolini, G.: Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55, 466–475 (2013)

    Article  Google Scholar 

  11. Konstantopoulos, C., Koutroulis, E.: Global maximum power point tracking of flexible photovoltaic modules. IEEE. Trans. Power Electron. 29(6), 2817–2828 (2014)

    Article  Google Scholar 

  12. Sharma, P., Duttagupta, S.P., Agarwal, V.: A novel approach for maximum power tracking from curved thin-film solar photovoltaic arrays under changing environmental conditions. IEEE. Trans. Ind. Appl. 50(6), 4142–4151 (2014)

    Article  Google Scholar 

  13. Meflah, A., Rahmoun, K., Mahrane, A., Chikh, M.: Outdoor performance modeling of three different silicon photovoltaic module technologies. Int. J. Energy Environ. Eng. 8(2), 143–152 (2017)

    Article  Google Scholar 

  14. Lyden, S., Haque, M.E., Gargoom, A., Negnevitsky, M., Muoka, P.I., 2012. Modeling and parameter estimation of photovoltaic cell. In: Power Engineering Conference, AUPEC. IEEE, pp. 1–6.

  15. Rekioua, D., Matagne, E.: Optimization of Photovoltaic Power Systems: Modelization. Simulation and Control. Springer Science & Business Media, Berlin (2012). https://doi.org/10.1007/978-1-4471-2403-0

    Book  Google Scholar 

  16. Chouder, A., Silvestre, S., Taghezouit, B., Karatepe, E.: Monitoring, modelling and simulation of PV systems using LabVIEW. Sol. Energy 91, 337–349 (2012)

    Article  Google Scholar 

  17. Walker, Geoff, 2001. Evaluating MPPT converter topologies using a matlab PV model. Aust. J. Electr. Electron. Eng. 21 (1).

  18. Benmessaoud, M.T., Boudghene Stambouli, A., Midoun, A., Zegrar, M., Zerhouni, F.Z., Zerhouni, M.H.: Proposed methods to increase the output efficiency of a photovoltaic (PV) system. Acta Polytech. Hung. 7(2), 11 (2010)

    MATH  Google Scholar 

  19. Atlas, H., Sharaf, M.: A fuzzy logic power tracking controller for a photovoltaic energy conversion scheme. Electr. Power Syst. Res. 25, 227–238 (1992)

    Article  Google Scholar 

  20. Bryan F., 1999, Simulation of grid-tied building integrated photovoltaic systems. MS thesis. Solar Energy Laboratory, University of Wisconsin, Madison.

  21. R. Chenni_, M. Makhlouf, T. Kerbache, A. Bouzid, A detailed modeling method for photovoltaic cells, Energy (2007), doi:https://doi.org/10.1016/j.energy.2006.12.006.

  22. Bellia, H., Youcef, R., Fatima, M.: A detailed modeling of photovoltaic module using MATLAB. NRIAG Journal of Astronomy and Geophysics 3, 53 (2014)

    Article  Google Scholar 

  23. Townsend, T.U., 1989, Method For Estimating The Long-Term Performance Of Direct-Coupled Photovoltaic Systems. M.S. Thesis, Mechanical Engineering, U. Of Wisconsin-Madison.

  24. Alsayid, B., Jallad, J., 2011. Modeling and simulation of photovoltaic cells/modules/arrays. Int. J. Res. Rev. Comput. Sci. (IJRRCS) 2 (6).

  25. Ishaque, K., Syafaruddin, Z.S.: A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two- diode model. Sol. Energy 85, 2217–2227 (2011)

    Article  Google Scholar 

  26. Gazoli, J.R., Ruppert, E., Villalva, M.G.: Modeling and circuit – based simulation of photovoltaic arrays. Braz. J. Power Electron. 14(1), 35–45 (2009)

    Google Scholar 

  27. De Soto, W.: Improvement and Validation of A Model For Photovoltaic Array Performance by. Sol. Energy 80, 78–88 (2006)

    Article  Google Scholar 

  28. Chouder, A., Rahmani, L., Sadaoui, N., Silvestre, S.: Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters. Simul. Model. Pract. Theory 20, 46–58 (2012)

    Article  Google Scholar 

  29. Di Piazza, M.C., Vitale, G.: Photovoltaic Sources: Modeling and Emulation. Springer, London (2013)

    Book  Google Scholar 

  30. Gow, J.A., Manning, C.D.: Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proceedings of Electric Power Applications 146(2), 193–200 (1999)

    Article  Google Scholar 

  31. Anani, N., Ibrahim, H.: Adjusting the Single-Diode Model Parameters of a Photovoltaic Module with Irradiance and Temperature. Energies 13, 3226 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors NB, SK, SAA, and ASA would like to acknowledge the financial support toward this research from Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under research Grant No. S-1440-0245.

Author information

Authors and Affiliations

Authors

Contributions

Authors NB, SK, SAA, and ASA contributed toward the modeling and simulation of the PV module and data generation. They also contributed toward the data analysis and discussions of the findings and manuscript writing. AI edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nacer Badi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badi, N., Khasim, S., Al-Ghamdi, S.A. et al. Accurate modeling and simulation of solar photovoltaic panels with simulink-MATLAB. J Comput Electron 20, 974–983 (2021). https://doi.org/10.1007/s10825-021-01656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01656-0

Keywords

Navigation