Skip to main content

Advertisement

Log in

Ecogeochemistry and Denitrification in Non-eutrophic Coastal Sediments

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal nutrient pollution is an ever-present threat to estuaries worldwide. Benthic denitrification has been identified as a crucial ecosystem service to help mitigate increasing N loads to the coast. However, the controls on denitrification in low-nutrient systems are not well constrained and are likely different to those in more widely studied eutrophic systems. This study aims to identify the specific controls on denitrification in low-nutrient estuaries, including the contribution of the macrofaunal community to denitrification rates, and to understand how this important service fits into the network of ecogeochemical processes in these systems. Results show that porewater ammonium concentrations and mud content are good predictors of net N2 flux in the dark. Additionally, models predict N2 flux rates much more effectively in the dark than in the light, but the macrofaunal community data, specifically species richness, is a key factor in both increasing the explanatory power of both models by nearly 20%. Additionally, interaction networks reveal that increasing mud content results in a shift in the macrofaunal community and a reduction in the N removal capacity of these intertidal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An, Soonmo, and Samantha B. Joye. 2001. Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography. 46 (1): 62–74. https://doi.org/10.4319/lo.2001.46.1.0062.

    Article  CAS  Google Scholar 

  • Anderson, Marti J., Ray N. Gorley, and K. Robert Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. New Zealand: Auckland.

    Google Scholar 

  • Bartoli, Marco, Daniele Nizzoli, David T. Welsh, and Pierluigi Viaroli. 2000. Short-term influence of recolonisation by the polycheate worm Nereis succinea on oxygen and nitrogen fluxes and denitrification: a microcosm simulation. Hydrobiologia. 431 (2/3): 165–174. https://doi.org/10.1023/a:1004088112342.

    Article  CAS  Google Scholar 

  • Bosch, Jennifer A., Jeffrey C. Cornwell, and W. Michael Kemp. 2015. Short-term effects of nereid polychaete size and density on sediment inorganic nitrogen cycling under varying oxygen conditions. Marine Ecology Progress Series. 524: 155–169. https://doi.org/10.3354/meps11185.

    Article  CAS  Google Scholar 

  • Brin, Lindsay D., Anne E. Giblin, and Jeremy J. Rich. 2014. Environmental controls of anammox and denitrification in Southern New England estuarine and shelf sediments. Limnology and Oceanography. 59 (3): 851–860. https://doi.org/10.4319/lo.2014.59.3.0851.

    Article  CAS  Google Scholar 

  • Burgin, Amy J., and Stephen K. Hamilton. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5 (2): 89–96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2.

    Article  Google Scholar 

  • Cahoon, Lawrence B. 1999. The role of benthic microalgae in neritic ecosystems. In Oceanography and Marine Biology, an Annual Review, ed. A.D. Ansell, R.N. Gibson, and Margaret Barnes, 37th ed., 47–86. London: Taylor & Francis.

    Google Scholar 

  • Cole, Janet, Annette Lees, and Alex Wilson. 2009. “Whangateau catchment and harbour study: summary and discussion.” Auckland Regional Council Technical Report 2009/006. Vol. 0504. http://docs.niwa.co.nz/library/public/9781877528132.pdf.

  • Cook, Perran L.M., Andrew T. Revill, Edward C.V. Butler, and Bradley D. Eyre. 2004. Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. II. Nitrogen cycling. Marine Ecology Progress Series. https://doi.org/10.3354/meps280039.

  • Crawshaw, Josie A., Marc Schallenberg, and Candida Savage. 2019. Physical and biological drivers of sediment oxygenation and denitrification in a New Zealand intermittently closed and open lake lagoon. New Zealand Journal of Marine and Freshwater Research. 53 (1): 33–59. https://doi.org/10.1080/00288330.2018.1476388.

    Article  Google Scholar 

  • Dalsgaard, Tage, Bo Thamdrup, and Donald E. Canfield. 2005. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology. 156 (4): 457–464. https://doi.org/10.1016/j.resmic.2005.01.011.

    Article  CAS  Google Scholar 

  • Day, P. 1965. Methods of Soil Analysis. In Particle fractionation and particle-size analysis, ed. C.A. Black, 545–567. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Deegan, Linda A., Jennifer L. Bowen, Deanne Drake, John W. Fleeger, Carl T. Friedrichs, Kari A. Galván, John E. Hobbie, et al. 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecological Applications. 17 (sp5): S42–S63. https://doi.org/10.1890/06-0452.1.

    Article  Google Scholar 

  • Delaney, M.L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles. 12 (4): 563–572. https://doi.org/10.1029/98GB02263.

    Article  CAS  Google Scholar 

  • Devol, Allan H. 2015. Denitrification, anammox, and N2 production in marine sediments. Annual Review of Marine Science. 7 (1): 403–423. https://doi.org/10.1146/annurev-marine-010213-135040.

    Article  Google Scholar 

  • Dong, Liang F., David B. Nedwell, and Andrew Stott. 2006. Sources of nitrogen used for denitrification and nitrous oxide formation in sediments of the hypernutrified Colne, the nutrified humber, and the oligotrophic Conwy estuaries, United Kingdom. Limnology and Oceanography. 51 (1part2): 545–557. https://doi.org/10.4319/lo.2006.51.1_part_2.0545.

    Article  CAS  Google Scholar 

  • Dong, Liang F., Milika Naqasima Sobey, Cindy J. Smith, Iman Rusmana, Wayne Phillips, Stott Andrew, A. Mark Osborn, and David B. Nedwell. 2011. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnology and Oceanography. 56 (1): 279–291. https://doi.org/10.4319/lo.2011.56.1.0279.

    Article  CAS  Google Scholar 

  • Douglas, Emily J., Conrad A. Pilditch, Casper Kraan, Louis A. Schipper, Andrew M. Lohrer, and Simon F. Thrush. 2017. Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20 (7): 1324–1336. https://doi.org/10.1007/s10021-017-0113-4.

    Article  CAS  Google Scholar 

  • Eyre, Bradley D., Angus J.P. Ferguson, Arthur Webb, Damien Maher, and Joanne M. Oakes. 2011. Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (Southern Moreton Bay, Australia). Biogeochemistry. 102 (1-3): 111–133. https://doi.org/10.1007/s10533-010-9425-6.

    Article  CAS  Google Scholar 

  • Eyre, Bradley D., Damien T. Maher, and Peter Squire. 2013. Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Global Biogeochemical Cycles. 27 (4): 1083–1095. https://doi.org/10.1002/2013GB004631.

    Article  CAS  Google Scholar 

  • Ferguson, Angus J.P., Bradley D. Eyre, and Jennita M. Gay. 2003. Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, Northern New South Wales, Australia. Aquatic Microbial Ecology. 33: 137–154. https://doi.org/10.3354/ame033137.

    Article  Google Scholar 

  • Foshtomi, Maryam Yazdani, Ulrike Braeckman, Sofie Derycke, Melanie Sapp, Dirk Van Gansbeke, Koen Sabbe, Anne Willems, Magda Vincx, and Jan Vanaverbeke. 2015. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE. 10 (6): e0130116. https://doi.org/10.1371/journal.pone.0130116.

    Article  CAS  Google Scholar 

  • Foster, Sarah Q., and Robinson W. Fulweiler. 2014. Spatial and historic variability of benthic nitrogen cycling in an anthropogenically impacted estuary. Frontiers in Marine Science. 1. https://doi.org/10.3389/fmars.2014.00056.

  • Fulweiler, R.W., S.M. Brown, S.W. Nixon, and B.D. Jenkins. 2013. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology Progress Series. 482: 57–68. https://doi.org/10.3354/meps10240.

    Article  CAS  Google Scholar 

  • Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michaels, J.H. Porter, and A.R. Townsend. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry. Vol. 70 (2): 153–226. https://doi.org/10.1007/s10533-004-0370-0.

    Article  CAS  Google Scholar 

  • Gardner, Leonard Robert. 1990. The role of rock weathering in the phosphorus budget of terrestrial watersheds. Biogeochemistry. 11 (2). https://doi.org/10.1007/BF00002061.

  • Gilbert, F., S. Hulth, V. Grossi, and R.C. Aller. 2016. Redox oscillation and benthic nitrogen mineralization within burrowed sediments: an experimental simulation at low frequency. Journal of Experimental Marine Biology and Ecology. 482: 75–84. https://doi.org/10.1016/j.jembe.2016.05.003.

    Article  CAS  Google Scholar 

  • Gongol, Catherine, and Candida Savage. 2016. Spatial variation in rates of benthic denitrification and environmental controls in four New Zealand estuaries. Marine Ecology Progress Series. 556: 59–77. https://doi.org/10.3354/meps11865.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Ehrnhardt, and K. Kremling. 1983. In Methods of seawater analysis, ed. Weinheim, 2nd ed. Wiley-VCH.

  • Guignard, Maïté S., Andrew R. Leitch, Claudia Acquisti, Christophe Eizaguirre, James J. Elser, Dag O. Hessen, and Punidan D. Jeyasingh, et al. 2017. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution. 5. https://doi.org/10.3389/fevo.2017.00070.

  • Halliday, Jane, and Vonda Commings. 2012. “Mahurangi Estuary Ecological Monitoring Programe: Report on data collected from July 1994 to January 2011.” https://knowledgeauckland.org.nz/media/1682/tr2012-003-mahurangi-estuary-ecological-monitoring-programme-report-1994-2011.pdf.

  • Higgins, Colleen B., Craig Tobias, Michael F. Piehler, Ashley R. Smyth, Richard F. Dame, Kurt Stephenson, and Bonnie L. Brown. 2013. Effect of aquacultured oyster biodeposition on sediment N2 production in Chesapeake Bay. Marine Ecology Progress Series. 473: 7–27. https://doi.org/10.3354/meps10062.

    Article  CAS  Google Scholar 

  • Hillman, Jenny R., Carolyn J. Lundquist, Theresa A. O’Meara, and Simon F. Thrush. 2020. Loss of large animals differentially influences nutrient fluxes across a heterogeneous marine intertidal soft-sediment ecosystem. Ecosystems. https://doi.org/10.1007/s10021-020-00517-4.

  • Howarth, Robert W. 2008. Coastal Nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae. 8 (1): 14–20. https://doi.org/10.1016/j.hal.2008.08.015.

    Article  CAS  Google Scholar 

  • Howarth, R.W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Z. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry. 35 (1): 75–139. https://doi.org/10.1007/BF02179825.

    Article  CAS  Google Scholar 

  • Humphries, Austin T., Suzanne G. Ayvazian, Joanna C. Carey, Boze T. Hancock, Sinead Grabbert, Donald Cobb, Charles J. Strobel, and Robinson W. Fulweiler. 2016. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates. Frontiers in Marine Science. 3. https://doi.org/10.3389/fmars.2016.00074.

  • Joye, Samantha B., and James T. Hollibaugh. 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science. 270 (5236): 623–625. https://doi.org/10.1126/science.270.5236.623.

    Article  CAS  Google Scholar 

  • Kana, Todd M., Darkangelo Christina, M. Duane Hunt, James B. Oldham, George E. Bennett, and Jeffrey C. Cornwell. 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry. 66 (23): 4166–4170. https://doi.org/10.1021/ac00095a009.

    Article  CAS  Google Scholar 

  • Kana, T.M., M.B. Sullivan, J.C. Cornwell, and K.M. Groszkowski. 1998. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnology and Oceanography. 43 (2): 334–339. https://doi.org/10.4319/lo.1998.43.2.0334.

    Article  CAS  Google Scholar 

  • Kellogg, M. Lisa, Jeffrey C. Cornwell, Michael S. Owens, and Kennedy T. Paynter. 2013. Denitrification and nutrient assimilation on a restored oyster reef. Marine Ecology Progress Series. 480: 1–19. https://doi.org/10.3354/meps10331.

    Article  CAS  Google Scholar 

  • Kromkamp, Jacco C., Edward P. Morris, Rodney M. Forster, Claire Honeywill, Scott Hagerthey, and David M. Paterson. 2006. Relationship of intertidal surface sediment chlorophyll concentration to hyperspectral reflectance and chlorophyll fluorescence. Estuaries and Coasts. 29 (2): 183–196. https://doi.org/10.1007/BF02781988.

    Article  CAS  Google Scholar 

  • Legendre, Piere, and Marti J. Andersson. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs. 69 (1): 1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2.

    Article  Google Scholar 

  • Lohrer, Andrew M., Simon F. Thrush, and Max M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature. 431 (7012): 1092–1095. https://doi.org/10.1038/nature03042.

    Article  CAS  Google Scholar 

  • Lohrer, Andrew M., Michael Townsend, Sarah F. Hailes, Iván F. Rodil, Katie Cartner, Daniel R. Pratt, and Judi E. Hewitt. 2016. Influence of New Zealand cockles (Austrovenus stutchburyi) on primary productivity in sandflat-seagrass (Zostera Muelleri) Ecotones. Estuarine, Coastal and Shelf Science. 181: 238–248. https://doi.org/10.1016/j.ecss.2016.08.045.

    Article  CAS  Google Scholar 

  • Lorenzen, Carl J. 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography. 12 (2): 343–346. https://doi.org/10.4319/lo.1967.12.2.0343.

    Article  CAS  Google Scholar 

  • MacIntyre, Hugh L., Richard J. Geider, and Douglas C. Miller. 1996. Microphytobenthos: the ecological role of the ‘secret garden’ of unvegetated, shallow-water marine habitats. i. distribution, abundance and primary production. Estuaries. https://doi.org/10.2307/1352224.

  • Mangan, Stephanie, Karin R. Bryan, Simon F. Thrush, Rebecca V. Gladstone-Gallagher, Andrew M. Lohrer, and Conrad A. Pilditch. 2020. Shady business: the darkening of estuaries constrains benthic ecosystem function. Marine Ecology Progress Series, no. 647: 33–48.

    Article  Google Scholar 

  • McArdle, B.H., and M.J. Anderson. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology. 82 (1): 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2.

    Article  Google Scholar 

  • Nicholls, Joanna C., and Mark Trimmer. 2009. Widespread occurrence of the anammox reaction in estuarine sediments. Aquatic Microbial Ecology. 55: 105–113. https://doi.org/10.3354/ame01285.

    Article  Google Scholar 

  • Nielsen, Lars Peter, and Ronnie Nøhr Glud. 1996. Denitrification in a coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber. Marine Ecology Progress Series. 137: 181–186. https://doi.org/10.3354/meps137181.

    Article  Google Scholar 

  • O’Meara, Theresa A., Jenny R. Hillman, and Simon F. Thrush. 2017. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions. Scientific Reports. 7 (1): 10218. https://doi.org/10.1038/s41598-017-11058-7.

    Article  CAS  Google Scholar 

  • O’Meara, Theresa A., Judi E. Hewitt, Simon F. Thrush, Emily J. Douglas, and Andrew M. Lohrer. 2020. Denitrification and the role of macrofauna across estuarine gradients in nutrient and sediment loading. Estuaries and Coasts. 43 (6): 1394–1405. https://doi.org/10.1007/s12237-020-00728-x.

    Article  CAS  Google Scholar 

  • Oczkowski, Autumn J., Emily A. Santos, Rose M. Martin, Andrew B. Gray, Alana R. Hanson, Elizabeth B. Watson, Evelyn Huertas, and Cathleen Wigand. 2020. Unexpected nitrogen sources in a tropical urban estuary. Journal of Geophysical Rearch- Biogeosciences.

  • OECD. 2017. New Zealand 2017. OECD Environmental performance reviews. https://doi.org/10.1787/9789264268203-en.

  • Pelegrí, S.P., and T.H. Blackburn. 1995. Effect of bioturbation by Nereis sp., Mya arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia. https://doi.org/10.1080/00785326.1995.10431509.

  • Piehler, M.F., and A.R. Smyth. 2011. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere. 2 (1): art12. https://doi.org/10.1890/ES10-00082.1.

    Article  Google Scholar 

  • Plew, David R., John R. Zeldis, Bruce D. Dudley, Amy L. Whitehead, Leigh M. Stevens, Barry M. Robertson, and Ben P. Robertson. 2020. Assessing the eutrophic susceptibility of New Zealand estuaries. Estuaries and Coasts. 43 (8): 2015–2033. https://doi.org/10.1007/s12237-020-00729-w.

    Article  CAS  Google Scholar 

  • Pratt, Daniel R., Andrew M. Lohrer, Conrad A. Pilditch, and Simon F. Thrush. 2014. Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems 17 (1): 182–194. https://doi.org/10.1007/s10021-013-9716-6.

    Article  Google Scholar 

  • Risgaard-Petersen, Nils, Rikke Louise Meyer, Markus Schmid, Mike S.M. Jetten, Alex Enrich-Prast, Søren Rysgaard, and Niels Peter Revsbech. 2004. Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology. 36: 293–304. https://doi.org/10.3354/ame036293.

    Article  Google Scholar 

  • Rodil, Iván F., Andrew M. Lohrer, Luca D. Chiaroni, Judi E. Hewitt, and Simon F. Thrush. 2011. Disturbance of sandflats by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. Ecological Applications. 21 (2): 416–426. https://doi.org/10.1890/09-1845.1.

    Article  Google Scholar 

  • Romero, Isabel C., Myrna E. Jacobson-Meyers, Jed A. Fuhrman, and Douglas G. Capone. 2015. Phylogenetic diversity of diazotrophs along an experimental nutrient gradient in mangrove sediments. Journal of Marine Science and Engineering. 3 (3): 699–719. https://doi.org/10.3390/jmse3030699.

    Article  Google Scholar 

  • Rysgaard, S., P.B. Christensen, and L.P. Nielsen. 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series. 126: 111–121. https://doi.org/10.3354/meps126111.

    Article  CAS  Google Scholar 

  • Rysgaard, Søren, Henrik Fossing, and Marlene Mark Jensen. 2001. Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (The Kattegat and the Skagerrak). Ophelia. 55 (2): 77–91. https://doi.org/10.1080/00785236.2001.10409475.

    Article  Google Scholar 

  • Schenone, Stefano, and Simon F. Thrush. 2020. Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions. Scientific Reports. 10 (1): 11909. https://doi.org/10.1038/s41598-020-68869-4.

    Article  CAS  Google Scholar 

  • Seitzinger, Sybil P., and Scott W. Nixon. 1985. Eutrophication and the rate of denitrification and {N}20 production in coastal marine sediments. Limnology and Oceanography 30 (6): 1332–1339. https://doi.org/10.4319/lo.1985.30.6.1332.

    Article  CAS  Google Scholar 

  • Seitzinger, S., J.A. Harrison, J.K. Böhlke, A.F. Bouwman, R. Lowrance, B. Peterson, C. Tobias, and G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications. 16 (6): 2064–2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Siwicka, Ewa, Simon F. Thrush, and Judi E. Hewitt. 2020. Linking changes in species–trait relationships and ecosystem function using a network analysis of traits. Ecological Applications. 30 (1): e02010. https://doi.org/10.1002/eap.2010.

    Article  Google Scholar 

  • Srivastava, Diane S., and Mark Vellend. 2005. Biodiversity-ecosystem function research: is it relevant to conservation? Annual Review of Ecology, Evolution, and Systematics. 36 (1): 267–294. https://doi.org/10.1146/annurev.ecolsys.36.102003.152636.

    Article  Google Scholar 

  • Steffen, Will, Katherine Richardson, Johan Rockström, Sarah E. Cornell, Ingo Fetzer, Elena M. Bennett, Reinette Biggs, et al. 2015. Planetary boundaries: guiding changing planet. Science. 347 (6223): 1259855. https://doi.org/10.1126/science.1259855.

    Article  CAS  Google Scholar 

  • Sundback, K., V. Enoksson, W. Graneli, and K. Pettersson. 1991. Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous- flow study. Marine Ecology Progress Series. 74: 263–279. https://doi.org/10.3354/meps074263.

    Article  Google Scholar 

  • Sundbäck, Kristina, Alison Miles, and Eva Göransson. 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series. 200: 59–76. https://doi.org/10.3354/meps200059.

    Article  Google Scholar 

  • Sundbäck, Kristina, Frank Linares, Fredrik Larson, Angela Wulff, and Anna Engelsen. 2004. Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: the role of denitrification and microphytobenthos. Limnology and Oceanography. 49 (4): 1095–1107. https://doi.org/10.4319/lo.2004.49.4.1095.

    Article  Google Scholar 

  • Teixeira, Catarina, Catarina Magalhães, Samantha B. Joye, and Adriano A. Bordalo. 2012. Potential rates and environmental controls of anaerobic ammonium oxidation in estuarine sediments. Aquatic Microbial Ecology. 66 (1): 23–32. https://doi.org/10.3354/ame01548.

    Article  Google Scholar 

  • Thrush, S.F., J.E. Hewitt, V.J. Cummings, J.I. Ellis, C. Hatton, A. Lohrer, and A. Norkko. 2004. Muddy waters: elevating sediment input to coastal and estuarine habitats. Frontiers in Ecology and the Environment. 2 (6): 299–306. https://doi.org/10.1890/1540-9295(2004)002[0299:MWESIT]2.0.CO;2.

    Article  Google Scholar 

  • Thrush, Simon F., Judi E. Hewitt, Max Gibbs, Carolyn Lundquist, and Alf Norkko. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9 (6): 1029–1040. https://doi.org/10.1007/s10021-005-0068-8.

    Article  Google Scholar 

  • Thrush, S.F., J.E. Hewitt, and A.M. Lohrer. 2012. Interaction networks in coastal soft-sediments highlight the potential for change in ecological resilience. Source: Ecological Applications Ecological Applications 22 (224): 1213–1223 http://www.jstor.org/stable/23213955.

    CAS  Google Scholar 

  • Thrush, Simon F., Judi E. Hewitt, Samantha Parkes, Andrew M. Lohrer, Conrad Pilditch, Sarah A. Woodin, and David S. Wethey, et al. 2014. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems. Ecology. 95 (6): 1451–1457. https://doi.org/10.1890/13-1879.1.

    Article  Google Scholar 

  • Thrush, Simon F., Judi E. Hewitt, Kraan Casper, A.M. Lohrer, Conrad A. Pilditch, and Emily Douglas. 2017. Changes in the location of biodiversity– ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proceedings of the Royal Society B: Biological Sciences. 284 (1852): 20162861. https://doi.org/10.1098/rspb.2016.2861.

    Article  CAS  Google Scholar 

  • Thrush, Simon F., Judi E. Hewitt, Rebecca V. Gladstone-Gallagher, Candida Savage, Carolyn Lundquist, Theresa A. O’Meara, Amanda M. Vieillard, et al. 2020. Cumulative stressors reduce the self-regulating capacity of coastal ecosystems. Ecological Applications.

  • Trimmer, Mark, Joanna C. Nicholls, and Bruno Deflandre. 2003. Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United Kingdom. Applied and Environmental Microbiology. 69 (11): 6447–6454. https://doi.org/10.1128/AEM.69.11.6447-6454.2003.

    Article  CAS  Google Scholar 

  • Valderrama, Jorge C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry. 10 (2): 109–122. https://doi.org/10.1016/0304-4203(81)90027-X.

    Article  CAS  Google Scholar 

  • van der Zee, Claar, Nathalie Roevros, and Lei Chou. 2007. Phosphorus speciation, transformation and retention in the Scheldt Estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Marine Chemistry. 106 (1-2): 76–91. https://doi.org/10.1016/j.marchem.2007.01.003.

    Article  CAS  Google Scholar 

  • Vieillard, Amanda M., and Robinson W. Fulweiler. 2012. Impacts of long-term fertilization on salt marsh tidal creek benthic nutrient and N2 gas fluxes. Marine Ecology Progress Series 471: 11–22. https://doi.org/10.3354/meps10013.

    Article  CAS  Google Scholar 

  • Vieillard, A.M., S.E. Newell, and S.F. Thrush. 2020. Recovering from bias: a call for further study of underrepresented tropical and low-nutrient estuaries. Journal of Geophysical Research: Biogeosciences 125. https://doi.org/10.1029/2020JG005766.

  • Volkenborn, N., L. Polerecky, D.S. Wethey, T.H. DeWitt, and S.A. Woodin. 2012. Hydraulic activities by ghost shrimp Neotrypaea californiensis induce oxic-anoxic oscillations in sediments. Marine Ecology Progress Series. 455: 141–156. https://doi.org/10.3354/meps09645.

    Article  CAS  Google Scholar 

  • Ward, Bess B. 2008. Nitrification in marine systems. In Nitrogen in the marine environment, edited by D, ed. C. Capone, D.A. Bronk, M.R. Mullholland, and E.J. Carpenter 2nd, 199–262. Burlington, MA: Elsevier.

    Chapter  Google Scholar 

  • Welsh, David T. 2003. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chemistry and Ecology. 19 (5): 321–342. https://doi.org/10.1080/0275754031000155474.

    Article  CAS  Google Scholar 

  • Whittingham, Mark J., Philip A. Stephens, Richard B. Bradbury, and Robert P. Freckleton. 2006. Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology. 75 (5): 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x.

    Article  Google Scholar 

  • Wiltshire, K.H., S. Harsdorf, B. Smidt, G. Blöcker, R. Reuter, and F. Schroeder. 1998. The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary and the German bight: a comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods. Journal of Experimental Marine Biology and Ecology. 222 (1-2): 113–131. https://doi.org/10.1016/S0022-0981(97)00141-X.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Julie Hope, Dr. Stefano Schenone, Ewa Siwicka and Dr. Jenny Hillman of the Leigh Marine Laboratory at the University of Auckland for assistance with field work and sample collection for this paper. We also thank Natalia Abrego and Professor David Wakrow in the School of Environment at Auckland University for use of the FIA for nutrient analysis and the Malvern for grainsize analysis. We also acknowledge Ngāti manuhiri as tangata whenua, and thank them for granting us access to these sites. This project was funded through the New Zealand National Science Challenge Sustainable Seas, Dynamic Seas, Tipping Points project (CO1X1515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vieillard.

Additional information

Communicated by Bongkeun Song

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieillard, A.M., Thrush, S.F. Ecogeochemistry and Denitrification in Non-eutrophic Coastal Sediments. Estuaries and Coasts 44, 1866–1882 (2021). https://doi.org/10.1007/s12237-021-00912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00912-7

Keywords

Navigation