Skip to main content

Advertisement

Log in

Role of UPP pathway in amelioration of diabetes-associated complications

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as “life style” disease. Due to the alarming number of patients, there is great need to therapies targeting functions which can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. Detailed analysis was done through various research and review papers which was searched using MEDLINE, BIOSIS, and EMBASE using various keywords. This search retrieved the most appropriate content on these molecules targeting UPP pathway. From this extensive review involving UPP pathway, it was concluded that the role of ubiquitin’s is not only limited to neurodegenerative disorders but also plays a critical role in progression of diabetes including obesity, insulin resistance, and various neurogenerative disorders but it also targets proteasomal degradation including mediation of cellular signaling pathways. Thus, drugs targeting UPP not only may show effect against diabetes but also are therapeutically beneficial in the treatment of diabetes-associated complications which may be obtained. Thus, based on the available information and data on UPP functions, it can be concluded that regulation of UPP pathway via downstream regulators mainly E1, E2, and E3 may bring promising results. Drugs targeting these transcriptional factors may emerge as a novel therapy in the treatment of diabetes and diabetes-associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe T, Hirasaka K, Kagawa S, Kohno S, Ochi A, Utsunomiya K, Sakai A, Ohno A, Teshima-Kondo S, Okumura Y, Oarada M (2013) Cbl-b is a critical regulator of macrophage activation associated with obesity-induced insulin resistance in mice. Diabetes. 62(6):1957–1969

    Article  CAS  Google Scholar 

  • Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004) Impaired Smad7-Smurf–mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest 113(2):253–264

    Article  CAS  Google Scholar 

  • Atanassov BS, Dent SY (2011) USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 12(9):924–930

    Article  CAS  Google Scholar 

  • Bai T, Wang F, Mellen N, Zheng Y, Cai L (2016) Diabetic cardiomyopathy: role of the E3 ubiquitin ligase. Am J Physiol-Endocrinol Metab 310(7):E473–E483

    Article  Google Scholar 

  • Balasubramanyam M, Sampathkumar R, Mohan V (2005) Is insulin signaling molecules misguided in diabetes for ubiquitin–proteasome mediated degradation? Mol Cell Biochem 275(1-2):117–125

    Article  CAS  Google Scholar 

  • Behrends C, Harper JW (2011) Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18(5):520

    Article  CAS  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700

    Article  CAS  Google Scholar 

  • Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R (2016) Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol 27(8):2277–2288

    Article  CAS  Google Scholar 

  • Bonala S, Lokireddy S, McFarlane C, Patnam S, Sharma M, Kambadur R (2016) Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) in response to high calorie diet intake. J Biol Chem 291(27):14392

    Article  CAS  Google Scholar 

  • Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M (2018) Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. Front Physiol 9:1514

    Article  Google Scholar 

  • Brinkmann K, Zigrino P, Witt A, Schell M, Ackermann L, Broxtermann P, Schüll S, Andree M, Coutelle O, Yazdanpanah B, Seeger JM (2013) Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Rep 3(3):881–891

    Article  CAS  Google Scholar 

  • Campello L, Esteve-Rudd J, Cuenca N et al (2013) The ubiquitin–proteasome system in retinal health and disease. Mol Neurobiol 47:790–810

    Article  CAS  Google Scholar 

  • Cardaci TD, Machek SB, Wilburn DT, Hwang PS, Willoughby DS. (2020) Ubiquitin proteasome system activity is suppressed by curcumin following exercise-induced muscle damage in human skeletal muscle. J Am Coll Nutr 1-1

  • Centers for Disease Control and Prevention (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States. US Department of Health and Human Services, Atlanta, p 2014

    Google Scholar 

  • Centers for Disease Control and Prevention. National Diabetes Statistics Report (2020) Centers for Disease Control and Prevention. US Dept of Health and Human Services, Atlanta, p 2020

    Google Scholar 

  • Chen H, Moreno-Moral A, Pesce F, Devapragash N, Mancini M, Heng EL, Rotival M, Srivastava PK, Harmston N, Shkura K, Rackham OJ (2019) WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat Commun 10(1):1–9

    CAS  Google Scholar 

  • Ciechanover A, Elias S, Heller H, Ferber S, Hershko A (1980a) Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255(16):7525–7528

    Article  CAS  Google Scholar 

  • Ciechanover A, Heller H, Elias S, Haas AL, Hershko A (1980b) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci 77(3):1365–1368

    Article  CAS  Google Scholar 

  • Clague MJ, Urbé S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143(5):682–685

    Article  CAS  Google Scholar 

  • Cohen S, Lee D, Zhai B, Gygi SP, Goldberg AL (2014) Trim32 reduces PI3K–Akt–FoxO signaling in muscle atrophy by promoting plakoglobin–PI3K dissociation. J Cell Biol 204(5):747–758

    Article  CAS  Google Scholar 

  • Collins AJ, Foley RN, Herzog C, Chavers BM, Gilbertson D, Ishani A, Kasiske BL, Liu J, Mau LW, McBean M, Murray A (2010) Excerpts from the US renal data system 2009 annual data report. Am J Kidney Dis 55(1):A6–A7

    Article  Google Scholar 

  • Costes S, Gurlo T, Rivera JF, Butler PC (2014) UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 10(6):1004–1014

    Article  CAS  Google Scholar 

  • Cui W, Li B, Bai Y, Miao X, Chen Q, Sun W, Tan Y, Luo P, Zhang C, Zheng S, Epstein PN (2013) Potential role for Nrf2 activation in the therapeutic effect of MG132 on diabetic nephropathy in OVE26 diabetic mice. Am J Physiol-Endocrinol Metab 304(1):E87–E99

    Article  CAS  Google Scholar 

  • Das S, Ramakrishna S, Kim KS (2020) Critical roles of deubiquitinating enzymes in the nervous system and neurodegenerative disorders. Mol Cell 43(3):203

    CAS  Google Scholar 

  • De Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, Wu X, Lee WP, Murray J, Webster JD (2017) Yu K. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ 24(1):26–37

    Article  CAS  Google Scholar 

  • Della Sala G, Agriesti F, Mazzoccoli C, Tataranni T, Costantino V, Piccoli C (2018) Clogging the ubiquitin-proteasome machinery with marine natural products: last decade update. Mar Drugs 16(12):467

    Article  CAS  Google Scholar 

  • Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61

    Article  CAS  Google Scholar 

  • Enslow BT, Stockand JD, Berman JM (2019) Liddle’s syndrome mechanisms, diagnosis and management. Integrated Blood Pressure Control 12:13

    Article  CAS  Google Scholar 

  • Esquerdo-Barragán M, Brooks MJ, Toulis V, Swaroop A, Marfany G (2019) Expression of deubiquitinating enzyme genes in the developing mammal retina. Mol Vis 25:800

    Google Scholar 

  • Fan Y, Lee K, Wang N, He JC (2017) The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diabetes Rep 17(3):17

    Article  Google Scholar 

  • Fraile JM, Quesada V, Rodríguez D, Freije JM, López-Otín C (2012) Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. 31(19):2373–2388

    Article  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65(1):45–79

    Article  CAS  Google Scholar 

  • Ge Z, Leighton JS, Wang Y, Peng X, Chen Z, Chen H, Sun Y, Yao F, Li J, Zhang H, Liu J (2018) Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Rep 23(1):213–226

    Article  CAS  Google Scholar 

  • Geng F, Wenzel S, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Annu Rev Biochem 81:177–201

    Article  CAS  Google Scholar 

  • Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271(44):27280–27284

    Article  Google Scholar 

  • Goru SK, Pandey A, Gaikwad AB (2016) E3 ubiquitin ligases as novel targets for inflammatory diseases. Pharmacol Res 106:1–9

    Article  CAS  Google Scholar 

  • Goru SK, Kadakol A, Gaikwad AB (2017) Hidden targets of ubiquitin proteasome system: to prevent diabetic nephropathy. Pharmacol Res 120:170–179

    Article  CAS  Google Scholar 

  • Gupta A, Behl T, Sachdeva M (2020) Key milestones in the diabetes research: a comprehensive update. Obes Med 17:100183

    Article  Google Scholar 

  • Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD (2004) Regulation and function of SUMO modification. J Biol Chem 279(52):53899–53902

    Article  CAS  Google Scholar 

  • Hirasaka K, Kohno S, Goto J et al (2007) Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice. Diabetes 56:2511–2522

    Article  CAS  Google Scholar 

  • Hoang CT, Hong Y, Truong AD, Lee J, Lee K, Hong YH (2017) Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. Dev Comp Immunol 74:40–48

    Article  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27

    Article  CAS  Google Scholar 

  • Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26(4):484–498

    Article  CAS  Google Scholar 

  • Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature. 453(7194):481–488

    Article  CAS  Google Scholar 

  • IDF (2020) data (https://diabetesatlas.org/data/en/world/). Accessed on 22-March-2020

  • Jana NR, Dikshit P, Goswami A, Nukina N (2004) Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279(12):11680–11685

    Article  CAS  Google Scholar 

  • Kim HJ, Magesh V, Lee JJ, Kim S, Knaus UG, Lee KJ (2015) Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget. 6(18):16287

    Article  Google Scholar 

  • Kimura Y, Tanaka K (2010) Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem 147(6):793–798

    Article  CAS  Google Scholar 

  • Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N (2010) Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell. 141(4):606–617

    Article  CAS  Google Scholar 

  • Komalavilas P, Shah PK, Jo H, Lincoln TM (1999) Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 274(48):34301–34309

    Article  CAS  Google Scholar 

  • Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

    Article  CAS  Google Scholar 

  • Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16(2):101

    Article  CAS  Google Scholar 

  • Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israël A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28(19):2885–2895

    Article  CAS  Google Scholar 

  • Leask A (2007) TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74(2):207–212

    Article  CAS  Google Scholar 

  • Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 25(3):1173–1182

    Article  CAS  Google Scholar 

  • Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114(8):1058–1071

    Article  CAS  Google Scholar 

  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3(1):e1487

    Article  CAS  Google Scholar 

  • Li JJ, Ferry RJ, Diao S, Xue B, Bahouth SW, Liao FF (2015) Nedd4 haploinsufficient mice display moderate insulin resistance, enhanced lipolysis, and protection against high-fat diet-induced obesity. Endocrinology. 156(4):1283–1291

    Article  CAS  Google Scholar 

  • Li S, Zhao J, Shang D, Kass DJ, Zhao Y (2018) Ubiquitination and deubiquitination emerge as players in idiopathic pulmonary fibrosis pathogenesis and treatment. JCI insight 3(10):e120362

    Article  Google Scholar 

  • Li J, Zou J, Littlejohn R, Liu J, Su H (2020) Neddylation, an emerging mechanism regulating cardiac development and function. Front Physiol 11:1624

    Article  Google Scholar 

  • Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W (2012) Park SH. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat Commun 3(1):1–2

    Article  CAS  Google Scholar 

  • Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD, Fang D (2012) USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 46(4):484–494

    Article  CAS  Google Scholar 

  • Liu YL, Yang YM, Xu H, Dong XS (2011) Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol 103(3):283–289

    Article  CAS  Google Scholar 

  • Liu H, Yu S, Xu W (2012) Xu J. Enhancement of 26S proteasome functionality connects oxidative stress and vascular endothelial inflammatory response in diabetes mellitus. Arterioscler Thromb Vasc Biol 32(9):2131–2140

    Article  CAS  Google Scholar 

  • Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, Chen T, Wang Y, Huang Y, Li CY, Cao C (2015) Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation. 131(9):795–804

    Article  CAS  Google Scholar 

  • Luo ZF, Qi W, Feng B, Mu J, Zeng W, Guo YH, Pang Q, Ye ZL, Liu L, Yuan FH (2011) Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome. Life Sci 88(11-12):512–520

    Article  CAS  Google Scholar 

  • Majetschak M, Patel MB, Sorell LT, Liotta C, Li S, Pham SM (2008) Cardiac proteasome dysfunction during cold ischemic storage and reperfusion in a murine heart transplantation model. Biochem Biophys Res Commun 365(4):882–888

    Article  CAS  Google Scholar 

  • Marino A, Menghini R, Fabrizi M, Casagrande V, Mavilio M, Stoehr R, Candi E, Mauriello A, Moreno-Navarrete JM, Gómez-Serrano M, Peral B (2014) ITCH deficiency protects from diet-induced obesity. Diabetes. 63(2):550–561

    Article  CAS  Google Scholar 

  • Matsubara T, Araki M, Abe H, Ueda O, Jishage KI, Mima A, Goto C, Tominaga T, Kinosaki M, Kishi S, Nagai K (2015) Bone morphogenetic protein 4 and Smad1 mediate extracellular matrix production in the development of diabetic nephropathy. Diabetes. 64(8):2978–2990

    Article  CAS  Google Scholar 

  • Medina EA, Afsari RR, Ravid T, Castillo SS, Erickson KL, Goldkorn T (2005) Tumor necrosis factor-α decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology. 146(6):2726–2735

    Article  CAS  Google Scholar 

  • Melo-Cardenas J, Zhang Y, Zhang DD, Fang D (2016) Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget. 7(28):44848

    Article  Google Scholar 

  • Meyer-Schwesinger C (2019) The ubiquitin–proteasome system in kidney physiology and disease. Nat Rev Nephrol 1

  • Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H, WHO Multinational Study Group (2001) Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 44(2):S14

    Article  Google Scholar 

  • Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, Sureda A, Tejada S, Vacca RA, Pittalà V, Gulei D (2018) Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: lessons learned from clinical trials. Cancer Lett 434:101–113

    Article  CAS  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32(1):193–203

    Article  CAS  Google Scholar 

  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell. 123(5):773–786

    Article  CAS  Google Scholar 

  • Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K (2016) Implications of insulin-like growth factor 1 receptor activation in lung cancer. Malays J Med Sci: MJMS 23(3):9

    Google Scholar 

  • Pallares-Trujillo J, Carbo N, Lopez-Soriano FJ, Argiles JM (2000) Does the mechanism responsible for TNF-mediated insulin resistance involve the proteasome? Med Hypotheses 54(4):565–569

    Article  CAS  Google Scholar 

  • Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 366(6467):818–822

    Article  CAS  Google Scholar 

  • Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S (2019) Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 52(3):181

    Article  CAS  Google Scholar 

  • Radón V, Czesla M, Reichelt J, Fehlert J, Hammel A, Rosendahl A, Knop JH, Wiech T, Wenzel UO, Sachs M, Reinicke AT (2018) Ubiquitin C-terminal hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney. Kidney Int 93(1):110–127

    Article  CAS  Google Scholar 

  • Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342(2):361–364

    Article  CAS  Google Scholar 

  • Rodríguez JE, Liao JY, He J, Schisler JC, Newgard CB, Drujan D, Glass DJ, Frederick CB, Yoder BC, Lalush DS, Patterson C (2015) The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination. Mol Cell Endocrinol 413:36–48

    Article  CAS  Google Scholar 

  • Rom O, Reznick AZ (2016) The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 98:218–230

    Article  CAS  Google Scholar 

  • Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398

    Article  CAS  Google Scholar 

  • Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277(44):42394–42398

    Article  CAS  Google Scholar 

  • Scheufele F, Wolf B, Kruse M, Hartmann T, Lempart J, Muehlich S, Pfeiffer AF, Field LJ, Charron MJ, Pan ZQ, Engelhardt S (2014) Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cell Signal 26(2):233–239

    Article  CAS  Google Scholar 

  • Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM, Hebert RL (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol-Renal Physiol 299(6):F1348–F1358

    Article  CAS  Google Scholar 

  • Senft D, Qi J, Ze’ev AR (2018) Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer 18(2):69

    Article  CAS  Google Scholar 

  • Shi J, Luo L, Eash J, Ibebunjo C, Glass DJ (2011) The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell 21(5):835–847

    Article  CAS  Google Scholar 

  • Song R, Peng W, Zhang Y, Lv F, Wu HK, Guo J, Cao Y, Pi Y, Zhang X, Jin L, Zhang M (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature. 494(7437):375–379

    Article  CAS  Google Scholar 

  • Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-κ B activation and diverse biological processes. Cell Death Differ 17(1):25–34

    Article  CAS  Google Scholar 

  • Sun S, Tan P, Huang X, Zhang W, Kong C, Ren F, Ubiquitinated SX (2018) CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes. J Biol Chem 293(7):2383–2394

    Article  CAS  Google Scholar 

  • Susztak K, Raff AC, Schiffer M, Böttinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 55(1):225–233

    Article  CAS  Google Scholar 

  • Taher MA, Dawood DH, Sanad MI, Hassan RA (2016) Searching for anti-hyperglycemic phytomolecules of Tecoma stans. Eur J Chem 7(4):397–404

    Article  CAS  Google Scholar 

  • Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM (2008) Inhibition of NADPH oxidase prevents advanced glycation end product–mediated damage in diabetic nephropathy through a protein kinase C-α–dependent pathway. Diabetes. 57(2):460–469

    Article  CAS  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102

    Article  CAS  Google Scholar 

  • Tsukamoto S, Hirota H, Imachi M, Fujimuro M, Onuki H, Ohta T, Yokosawa H (2005) Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett 15(1):191–194

    Article  CAS  Google Scholar 

  • Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY (2012) The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol 5(8):726

    CAS  Google Scholar 

  • Udayan B, Fiifi NA, Priyabrata M, Resham B (2020) When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis 11(12):1033

    Article  CAS  Google Scholar 

  • VerPlank JJ, Lokireddy S, Feltri ML, Goldberg AL, Wrabetz L (2018) Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia. 66(2):379–395

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Åresolution. J Mol Biol 194(3):531–544

    Article  CAS  Google Scholar 

  • Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 147(9):4160–4168

    Article  CAS  Google Scholar 

  • Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN (2013) Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Phys Heart Circ Phys 304(4):H567–H578

    CAS  Google Scholar 

  • Wang Z, Zhu WG, Xu X (2017) Ubiquitin-like modifications in the DNA damage response. Mutation Res/Fundam Mol Mech Mutagen 803:56–75

    Article  CAS  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2(3):169–178

    Article  CAS  Google Scholar 

  • Wertz IE, Murray JM (2019) Structurally-defined deubiquitinase inhibitors provide opportunities to investigate disease mechanisms. Drug Discov Today Technol 31:109–123

    Article  Google Scholar 

  • Yang S, Wang B, Humphries F, Hogan AE, O’Shea D, Moynagh PN (2014) The E3 ubiquitin ligase Pellino3 protects against obesity-induced inflammation and insulin resistance. Immunity. 41(6):973–987

    Article  CAS  Google Scholar 

  • Yang L, Zhao D, Ren J, Yang J (2015) Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852(2):209–218

    Article  CAS  Google Scholar 

  • Yang XD, Xiang DX, Yang YY (2016) Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 18(8):747–754

    Article  CAS  Google Scholar 

  • Yi JS, Park JS, Ham YM, Nguyen N, Lee NR, Hong J, Kim BW, Lee H, Lee CS, Jeong BC, Song HK (2013) MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat Commun 4:2354

    Article  Google Scholar 

  • Zalmas LP, Zhao X, Graham AL, Fisher R, Reilly C, Coutts AS, La Thangue NB (2008) DNA-damage response control of E2F7 and E2F8. EMBO Rep 9(3):252–259

    Article  CAS  Google Scholar 

  • Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 101(13):1539–1545

    Article  CAS  Google Scholar 

  • Zhang H, Luo W, Sun Y, Qiao Y, Zhang L, Zhao Z, Lv S (2016) Wnt/β-catenin signaling mediated-UCH-L1 expression in podocytes of diabetic nephropathy. Int J Mol Sci 17(9):1404

    Article  CAS  Google Scholar 

  • Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X (2016) Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 8:303

    Article  CAS  Google Scholar 

  • Zhong Y, Lee K, He JC (2018) SIRT1 Is a potential drug target for treatment of diabetic kidney disease. Front Endocrinol 9:624

    Article  Google Scholar 

  • Zhou P, Yan F (2020) CRL4 ubiquitin pathway and DNA damage response. In: Cullin-RING Ligases and Protein Neddylation. Springer, Singapore, pp 225–239

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AG and TB: conceived the study and wrote the first draft of the paper; MHR, HNY, and GP: review of literature; IK: figure work; LA and SA: proof read

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

All the authors approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Behl, T., Aleya, L. et al. Role of UPP pathway in amelioration of diabetes-associated complications. Environ Sci Pollut Res 28, 19601–19614 (2021). https://doi.org/10.1007/s11356-021-12781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12781-5

Keywords

Navigation