Skip to main content
Log in

YAP promotes sorafenib resistance in hepatocellular carcinoma by upregulating survivin

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Sorafenib is the standard first-line treatment for advanced hepatocellular carcinoma (HCC), but its use is hampered by secondary drug resistance. Yes-associated protein (YAP) is a downstream effector of the Hippo signaling pathway, which is crucial for liver tumorigenesis. As yet, however, the mechanism underlying sorafenib resistance and the role of YAP therein is not fully understood and needs to be explored further.

Methods

Western blotting, flow cytometry and CCK-8 assays were used to assess the role of YAP in HCC sorafenib resistance. Next, qRT-PCR and Western blotting were performed to identify survivin as a YAP downstream effector, and rescue experiments were performed to confirm that YAP induces sorafenib resistance via survivin. Additionally, Western blotting, flow cytometry and in vivo xenograft models were used to evaluate the effect of verteporfin in combination with sorafenib on HCC.

Results

We found that sorafenib enhances YAP nuclear accumulation and activation, thereby promoting sorafenib resistance through inhibiting apoptosis in HCC cells. In addition, we found that survivin acts as a downstream mediator of YAP to resist sorafenib-induced apoptosis. Pharmacological inhibition of YAP by verteporfin increased the sensitivity of HCC cells to sorafenib and reversed sorafenib resistance. Moreover, verteporfin in combination with sorafenib significantly suppressed in vivo HCC tumor growth.

Conclusions

Our data indicate that YAP promotes sorafenib resistance through upregulation of survivin expression in HCC cells. Targeting YAP may be a therapeutic strategy to improve the antitumor effects of sorafenib in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and materials supporting the conclusion of this manuscript are included in the article.

Abbreviations

HCC:

Hepatocellular carcinoma

IHC:

Immunohistochemistry

QRT-PCR:

quantitative real-time polymerase chain reaction

siRNA:

Small interfering RNA

YAP:

Yes-associated protein

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  PubMed  Google Scholar 

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)

    Article  PubMed  Google Scholar 

  3. J. Zucman-Rossi, A. Villanueva, J.C. Nault, J.M. Llovet, Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226-1239.e1224 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016)

    Article  PubMed  Google Scholar 

  5. J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc, A.C. de Oliveira, A. Santoro, J.L. Raoul, A. Forner, M. Schwartz, C. Porta, S. Zeuzem, L. Bolondi, T.F. Greten, P.R. Galle, J.F. Seitz, I. Borbath, D. Haussinger, T. Giannaris, M. Shan, M. Moscovici, D. Voliotis, J. Bruix, S.I.S. Group, Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. M.S. Copur, Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 2498; author reply 2498–2499 (2008)

  7. J.F. Dufour, The evasive promise of antiangiogenic therapy. J. Hepatol. 51, 970–972 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. M.A. Worns, P.R. Galle, HCC therapies–lessons learned. Nat. Rev. Gastroenterol. Hepatol. 11, 447–452 (2014)

    Article  PubMed  Google Scholar 

  9. C. Berasain, Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut 62, 1674–1675 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. K.F. Harvey, X. Zhang, D.M. Thomas, The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246–257 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. J. Huang, S. Wu, J. Barrera, K. Matthews, D. Pan, The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. F.X. Yu, B. Zhao, K.L. Guan, Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. Zhao, K. Tumaneng, K.L. Guan, The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. F. Zanconato, M. Cordenonsi, S. Piccolo, YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Overholtzer, J. Zhang, G.A. Smolen, B. Muir, W. Li, D.C. Sgroi, C.X. Deng, J.S. Brugge, D.A. Haber, Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl. Acad. Sci. U. S. A. 103, 12405–12410 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Zhang, J. Zhang, X. You, Q. Liu, Y. Du, Y. Gao, C. Shan, G. Kong, Y. Wang, X. Yang, L. Ye, X. Zhang, Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology 56, 2051–2059 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. J. Tao, D.F. Calvisi, S. Ranganathan, A. Cigliano, L. Zhou, S. Singh, L. Jiang, B. Fan, L. Terracciano, S. Armeanu-Ebinger, S. Ribback, F. Dombrowski, M. Evert, X. Chen, S.P.S. Monga, Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 690–701 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. W. Kim, S.K. Khan, J. Gvozdenovic-Jeremic, Y. Kim, J. Dahlman, H. Kim, O. Park, T. Ishitani, E.H. Jho, B. Gao, Y. Yang, Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137–152 (2017)

    Article  PubMed  Google Scholar 

  19. S.M.E. Weiler, F. Pinna, T. Wolf, T. Lutz, A. Geldiyev, C. Sticht, M. Knaub, S. Thomann, M. Bissinger, S. Wan, S. Rossler, D. Becker, N. Gretz, H. Lang, F. Bergmann, V. Ustiyan, T.V. Kalin, S. Singer, J.S. Lee, J.U. Marquardt, P. Schirmacher, V.V. Kalinichenko, K. Breuhahn, Induction of chromosome instability by activation of yes-associated protein and forkhead box M1 in liver cancer. Gastroenterology 152, 2037-2051.e2022 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. W.C. Yuan, B. Pepe-Mooney, G.G. Galli, M.T. Dill, H.T. Huang, M. Hao, Y. Wang, H. Liang, R.A. Calogero, F.D. Camargo, NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Zhang, D. Zhou, Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr. Opin. Cell Biol. 61, 64–71 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. L. Lin, A.J. Sabnis, E. Chan, V. Olivas, L. Cade, E. Pazarentzos, S. Asthana, D. Neel, J.J. Yan, X. Lu, L. Pham, M.M. Wang, N. Karachaliou, M.G. Cao, J.L. Manzano, J.L. Ramirez, J.M. Torres, F. Buttitta, C.M. Rudin, E.A. Collisson, A. Algazi, E. Robinson, I. Osman, E. Munoz-Couselo, J. Cortes, D.T. Frederick, Z.A. Cooper, M. McMahon, A. Marchetti, R. Rosell, K.T. Flaherty, J.A. Wargo, T.G. Bivona, The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T.Y. Zhou, L.H. Zhuang, Y. Hu, Y.L. Zhou, W.K. Lin, D.D. Wang, Z.Q. Wan, L.L. Chang, Y. Chen, M.D. Ying, Z.B. Chen, S. Ye, J.S. Lou, Q.J. He, H. Zhu, B. Yang, Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells. Sci. Rep. 6, 30483 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Xia, X. Dai, H. Yu, S. Zhou, Z. Fan, G. Wei, Q. Tang, Q. Gong, F. Bi, EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death Dis. 9, 269 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. A.M. Gomes, T.S. Pinto, C.J. da Costa Fernandes, R.A. da Silva, W.F. Zambuzzi, Wortmannin targeting phosphatidylinositol 3-kinase suppresses angiogenic factors in shear-stressed endothelial cells. J. Cell. Physiol. 235, 5256–5269 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. F. Pitoia, F. Jerkovich, Selective use of sorafenib in the treatment of thyroid cancer. Drug Des. Devel. Ther. 10, 1119–1131 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Johnson, G. Halder, The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13, 63–79 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. D. Pan, The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z. Meng, T. Moroishi, K.L. Guan, Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1–17 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D.D. Shao, W. Xue, E.B. Krall, A. Bhutkar, F. Piccioni, X. Wang, A.C. Schinzel, S. Sood, J. Rosenbluh, J.W. Kim, Y. Zwang, T.M. Roberts, D.E. Root, T. Jacks, W.C. Hahn, KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Kapoor, W. Yao, H. Ying, S. Hua, A. Liewen, Q. Wang, Y. Zhong, C.J. Wu, A. Sadanandam, B. Hu, Q. Chang, G.C. Chu, R. Al-Khalil, S. Jiang, H. Xia, E. Fletcher-Sananikone, C. Lim, G.I. Horwitz, A. Viale, P. Pettazzoni, N. Sanchez, H. Wang, A. Protopopov, J. Zhang, T. Heffernan, R.L. Johnson, L. Chin, Y.A. Wang, G. Draetta, R.A. DePinho, Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Rosenbluh, D. Nijhawan, A.G. Cox, X. Li, J.T. Neal, E.J. Schafer, T.I. Zack, X. Wang, A. Tsherniak, A.C. Schinzel, D.D. Shao, S.E. Schumacher, B.A. Weir, F. Vazquez, G.S. Cowley, D.E. Root, J.P. Mesirov, R. Beroukhim, C.J. Kuo, W. Goessling, W.C. Hahn, beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. W. Zhang, Y. Gao, F. Li, X. Tong, Y. Ren, X. Han, S. Yao, F. Long, Z. Yang, H. Fan, L. Zhang, H. Ji, YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res. 75, 4450–4457 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. K. Ma, Q. Xu, S. Wang, W. Zhang, M. Liu, S. Liang, H. Zhu, N. Xu, Nuclear accumulation of Yes-Associated Protein (YAP) maintains the survival of doxorubicin-induced senescent cells by promoting survivin expression. Cancer Lett. 375, 84–91 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Liu-Chittenden, B. Huang, J.S. Shim, Q. Chen, S.J. Lee, R.A. Anders, J.O. Liu, D. Pan, Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. Zhai, X.Y. Sun, Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J. Hepatol. 5, 345–352 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  37. C.A. Hall, R. Wang, J. Miao, E. Oliva, X. Shen, T. Wheeler, S.G. Hilsenbeck, S. Orsulic, S. Goode, Hippo pathway effector Yap is an ovarian cancer oncogene. Cancer Res. 70, 8517–8525 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J.M. Huang, I. Nagatomo, E. Suzuki, T. Mizuno, T. Kumagai, A. Berezov, H. Zhang, B. Karlan, M.I. Greene, Q. Wang, YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32, 2220–2229 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. A. Perra, M.A. Kowalik, E. Ghiso, G.M. Ledda-Columbano, L. Di Tommaso, M.M. Angioni, C. Raschioni, E. Testore, M. Roncalli, S. Giordano, A. Columbano, YAP activation is an early event and a potential therapeutic target in liver cancer development. J. Hepatol. 61, 1088–1096 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. M.E. Garcia-Rendueles, J.C. Ricarte-Filho, B.R. Untch, I. Landa, J.A. Knauf, F. Voza, V.E. Smith, I. Ganly, B.S. Taylor, Y. Persaud, G. Oler, Y. Fang, S.C. Jhanwar, A. Viale, A. Heguy, K.H. Huberman, F. Giancotti, R. Ghossein, J.A. Fagin, NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discov. 5, 1178–1193 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. E. Ciamporcero, H. Shen, S. Ramakrishnan, S. Yu Ku, S. Chintala, L. Shen, R. Adelaiye, K.M. Miles, C. Ullio, S. Pizzimenti, M. Daga, G. Azabdaftari, K. Attwood, C. Johnson, J. Zhang, G. Barrera, R. Pili, YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541–1553 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. T. Moroishi, C.G. Hansen, K.L. Guan, The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. Gronich, G. Rennert, Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat. Rev. Clin. Oncol. 10, 625–642 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (No. 81874188) and the Science and Technology Project of Henan province of China (No. 202102310119).

Author information

Authors and Affiliations

Authors

Contributions

TS designed the study and prepared the manuscript; WM and HP performed most of the experiments; TS and LJ analyzed the data and competed the figures; QW revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Sun.

Ethics declarations

Ethics approval and consent to participate

All experiments were performed in accordance with the standards of the ethics committee of the First Affiliated Hospital of Zhengzhou University.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Fig. 1

The protein levels of YAP were analyzed by western blotting assay in liver cancer cell lines and in a normal human hepatic cell line LO2 (PNG 39 kb) (PNG 24 kb)

High Resolution Image (TIF 248 kb)

Supplemental Fig. 2

Huh-7R and HepG2R were resistant to sorafenib induced apoptosis. (a, b) Huh-7R and HepG2R cells were exposed to the indicated doses of sorafenib for 24 h. Cells were collected for western blotting. (c, d) Proteins from the cytoplasm and nucleus were separated, and the localization of YAP were detected by western blotting. (e, f) The mRNA expressions of CTGF and CYR61 were analyzed by qRT-PCR. Results were presented as mean ± sem (n = 3) for each treatment (PNG 114 kb)

High Resolution Image (TIF 1460 kb)

Supplemental Fig. 3

Knockdown YAP expression using shRNAs in Huh-7 and HepG2 cells. Huh-7 and HepG2 cells were transfected with shYAP. (a, b) The protein levels of YAP were analyzed with western blotting. (c, d) The mRNA levels of YAP were analyzed with RT-PCR (PNG 83 kb)

High Resolution Image (TIF 2678 kb)

Supplemental Fig. 4

Sorafenib had no significant effect on YAP mRNA expression. (a-b) Huh-7 and HepG2 cells transfected with shYAP were treated with sorafenib for 24 h. The mRNA levels of YAP were analyzed with RT-PCR (PNG 39 kb)

High Resolution Image (TIF 2478 kb)

Supplemental Fig. 5

YAP attenuated the cytotoxicity of sorafenib. (a, b) Huh-7 and HepG2 cells transfected with shRNA were treated with different concentration of sorafenib for 72 h. Cell viability was measured by CCK-8. (c) LO2 cells transfected with flag-YAP or vector were treated with different concentration of sorafenib for 72 h. Cell viability was measured by CCK-8 (PNG 35 kb)

High Resolution Image (TIF 1040 kb)

Supplemental Fig. 6

YAP inhibitor verteporfin reversed sorafenib resistance. (a, b) Huh-7R and HepG2R cells were treated with sorafenib in combination with or without verteporfin for 24 hours. Cells were analyzed using western blotting. (c, d) Huh-7R and HepG2R cells were treated with different combinations of sorafenib and verteporfin for 72 h. Cell viability was measured by CCK-8. (e, f) Huh-7R and HepG2R cells were treated with different combinations of sorafenib and verteporfin. Cells viability was analyzed by colony formation assay. Columns were the average of three independent experiments. (g) Huh-7R and HepG2R cells were treated with different combinations of sorafenib and verteporfin for 48 h. Cells were analyzed by flow cytometry. Columns were the average of three independent experiments. Results were presented as mean ± sem (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 (PNG 629 kb)

High Resolution Image (TIF 7173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Mao, W., Peng, H. et al. YAP promotes sorafenib resistance in hepatocellular carcinoma by upregulating survivin. Cell Oncol. 44, 689–699 (2021). https://doi.org/10.1007/s13402-021-00595-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00595-z

Keywords

Navigation