Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-07T18:29:03.681Z Has data issue: false hasContentIssue false

Sexual reproductive strategies of Puya nitida (Bromeliaceae) in a Colombian paramo, a tropical high-elevation ecosystem

Published online by Cambridge University Press:  02 March 2021

Alejandra Franco-Saldarriaga*
Affiliation:
Grupo de investigación en Biología de Organismos Tropicales (BIOTUN), Department of Biology, Sciences Faculty, Universidad Nacional de Colombia, Bogotá-Colombia, Carrera 30 N°45-03 edificio 421
María Argenis Bonilla-Gómez
Affiliation:
Grupo de investigación en Biología de Organismos Tropicales (BIOTUN), Department of Biology, Sciences Faculty, Universidad Nacional de Colombia, Bogotá-Colombia, Carrera 30 N°45-03 edificio 421
*
Author for correspondence:*Alejandra Franco-Saldarriaga, Email: afrancos@unal.edu.co.

Abstract

The low availability of pollinators in high-elevation ecosystems can lead to flowering plants showing different adaptive responses in order to assure their reproductive success. Shifts toward autogamy and asexual reproductive rates (the reproductive assurance hypothesis) and the compensatory measures to maintain outcrossing such as flower longevity and more prolonged pistil receptivity (the increased pollination probability hypothesis) are some of these responses. Several studies have tested both hypotheses, but investigations of plants of tropical alpine environments such as paramos that support these assumptions are still scarce. Puya nitida, an endemic Colombian plant species distributed in the paramo and subparamo in the Eastern Cordillera of Cundinamarca department, was used as a case study to test its reproductive characteristics that assure its sexual reproduction. We analysed the species’ floral morphology and development, its phenological patterns and its plant mating-system. We found that Puya nitida showed floral characteristics that promote pollination by birds, herkogamy and dichogamy, flowers and receptive stigmas with 9 and 12 days of longevity, respectively and an index of self-incompatibility that shows that it is mostly self-incompatible. We found a synchronic phenological pattern with an annual frequency and an intermediate duration with a peak in the period of lowest rainfall. Our results suggested that longer floral development, prolonged stigma receptivity, herkogamy and dichogamy and self-incompatibility might assure reproductive success, since the cross-pollination might be favoured when few pollinators are in attendance. Overall, these reproductive mechanisms add evidence to the increased pollination probability hypothesis, specifically for a plant species of a tropical high-elevation ecosystem where pollinators are scarce.

Type
Research Article
Copyright
© The Author(s) 2021. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Arathi, HS, Rasch, A, Cox, C and Kelly, JK (2002) Autogamy and floral longevity in Mimulus guttatus. International Journal of Plant Sciences 163, 567573.CrossRefGoogle Scholar
Arista, M, Berjano, R, Viruel, J, Ortiz, MA, Talavera, M and Ortiz, PL (2017) Uncertain pollination environment promotes the evolution of a stable mixed reproductive system in the self-incompatible Hypochaeris salzmanniana (Asteraceae). Annals of Botany 120, 447456.CrossRefGoogle Scholar
Arroyo, MT, Armesto, JJ and Primack, RB (1985) Community studies in pollination ecology in the High Temperate Andes of Central Chile II. Effect of temperature on visitation rates and pollination possibilities 1. Plant Systematics and Evolution 149, 187203.CrossRefGoogle Scholar
Berry, PC and Calvo, RN (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high Andean genus Espeletia (Asteraceae) l. American Journal of Botany 76, 16021614.CrossRefGoogle Scholar
Berry, P and Calvo, R (1994) An overview of the reproductive biology of Espeletia (Asteraceae) in the Venezuelan Andes. In Rundel, PW, Smith, AP and Meinzer, FC (eds), Tropical Alpine Environments. New York, NY: Cambridge University Press, pp. 229248.CrossRefGoogle Scholar
Bingham, RA and Orthner, AR (1998) Efficient pollination of alpine plants. Nature 391, 238239.CrossRefGoogle Scholar
Bingham, RA and Ranker, TA (2000) Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). International Journal of Plant Sciences 161, 403411.CrossRefGoogle Scholar
Chaparro, HA (2005) Biología reproductiva de la bromelia terrestre Puya trianae en el parque Chingaza. In Bonilla, MA (eds), Estrategias adaptativas de plantas del páramo y del bosque altoandino en la cordillera Oriental de Colombia. Bogotá: Universidad Nacional de Colombia, pp. 275286.Google Scholar
Chaparro, HA and Mora, F (2003) Aporte de la reproducción sexual y asexual en la dinámica de una población de rosetas de Puya cryptantha en el P.N.N Chingaza. Undergraduate thesis. Universidad Nacional de Colombia. Facultad de ciencias. Departamento de Biología. Bogotá.Google Scholar
Dafni A (2001) Field Methods in Pollination Ecology. Haifa: Institute of Evolution, University of Haifa.Google Scholar
Darwin, C (1876) The Effects of Cross- and Self-fertilization in the Vegetable Kingdom. London: John Murray.CrossRefGoogle Scholar
Fabbro, T and Körner, C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199, 7081.CrossRefGoogle Scholar
Faegri, K and Van Der Pijl, L (1979) The Principles of Pollination Ecology. 3rd edition. Oxford: Pergamon Press.Google Scholar
Fagua, JC and Gonzalez, VH (2007) Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a Giant Andean caulescent rosette. Plant Biology 9, 127135.CrossRefGoogle Scholar
Franco-Saldarriaga, A (2014) Estrategias de la reproducción sexual de Puya nitida Mez. en el Parque Nacional Natural Chingaza (Cundinamarca, Colombia). MSc Thesis, Universidad Nacional de Colombia, Bogotá-Colombia.Google Scholar
García, N and Galeano, G (2006) Libro Rojo de Plantas de Colombia. Volumen 3: Las bromelias, las labiadas y las pasifloras. Serie libros rojos de especies amenazadas de Colombia. Bogotá: Instituto Alexander von Humboldt–Instituto de ciencias Naturales de la Universidad Nacional de Colombia, Ministerio de Medio Ambiente, Vivienda y Desarrollo.Google Scholar
González, MS, Urbano, SM and Pianda, M (2010) Patrones de biología reproductiva de Puya clava-herculis y Puya cryptantha en ambientes paramunos contrastantes en el departamento de Nariño. Revista de la Asociación Colombiana de Ciencias Biológicas 22, 132146.Google Scholar
Gutiérrez, A (2005) Ecología de la interacción entre colibríes (Aves: Trochilidae) y plantas que polinizan en el bosque Alto – andino de Torca. MSc thesis, Universidad Nacional de Colombia, Bogotá, Colombia.Google Scholar
Hornung-Leoni, C and Sosa, V (2006) Morphological variation in Puya (Bromeliaceae): an allometric study. Plant Systematics and Evolution 256, 3553.CrossRefGoogle Scholar
Körner, C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd Edition. Berlin: Springer.CrossRefGoogle Scholar
Lara, K and Bonilla-Gómez, MA (2006) Aspectos de la biología reproductiva de una población de Puya trianae Baker, en la reserva municipal de Cogua. Acta Biológica Colombiana 11, 141.Google Scholar
Lloyd, DG (1965) Evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). Contributions from the Gray Herbarium of Harvard University 195, 3134.Google Scholar
Lloyd, DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. American Naturalist 113, 6779.CrossRefGoogle Scholar
Lloyd, DG and Webb, CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zealand Journal of Botany 24, 135162.CrossRefGoogle Scholar
Lloyd, DG and Schoen, DJ (1992) Self and cross fertilization in plants. I. Functional dimensions. International Journal of Plant Sciences 153, 358369.CrossRefGoogle Scholar
Luteyn, J (1999) Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature (Memoirs of the New York Botanical Garden, vol. 84). New York, NY: The New York Botanical Garden Press.Google Scholar
Miller, GA (1987) The population biology and physiological ecology of species of Puya (Bromeliaceae) in the Ecuadorian Andes. PhD Thesis, Connecticut University, Storrs, Connecticut.Google Scholar
Mosquin, T (1966) Reproductive specialization as a factor in the evolution of the Canadian flora. In Taylor, RL and Ludwig, RA (eds), The Evolution of Canada’s Flora. Toronto: University of Toronto Press, pp. 4163.Google Scholar
Pedraza-Peñalosa, P, Betancur, J and Franco-Rosselli, P (2005) Chisacá, un recorrido por los páramos andinos. 2nd edition. Bogotá: Instituto de Ciencias Naturales e Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Google Scholar
Raduski, AR, Haney, EB and Igíc, B (2011) The expression of self-incompatibility in angiosperms is bimodal. Evolution 66, 12751283.CrossRefGoogle ScholarPubMed
Restrepo-Chica, M (2014) Mecanismos de la reproducción sexual relacionados con la coexistencia de Puya nitida y Puya trianae (Bromeliaceae: Pitcairnioidae) en el parque nacional natural Chingaza. MSc Thesis, Universidad Nacional de Colombia, Bogotá, Colombia.Google Scholar
Restrepo-Chica, M and Bonilla-Gómez, MA (2017) Dinámica de la fenología y visitantes florales de dos bromelias terrestres de un páramo de Colombia. Revista Mexicana de Biodiversidad 88, 636645.CrossRefGoogle Scholar
Rodriguez-Riano, T and Dafni, A (2000) A new procedure to assess pollen viability. Sexual Plant Reproduction 12, 241244.CrossRefGoogle Scholar
Smith, AP and Young, TP (1987) Tropical alpine plant ecology. Annual Review of Ecology and Systematics 18, 137158.CrossRefGoogle Scholar
Smith, LB and Downs, RJ (1974) Flora Neotropica Monograph No. 14 (Pitcairnioideae) (Bromeliaceae). Flora Neotropica 14, 1647.Google Scholar
Sobrevila, C. (1989) Effects of pollen donors on seed formation in Espeletia schultzii (Compositae) populations at different altitudes. Plant Systematics and Evolution 166, 4567.CrossRefGoogle Scholar
Steinacher, G and Wagner, J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora 205, 376387.CrossRefGoogle Scholar
Torres-Díaz, C, Gómez-González, S, Stotz, GC, Torres-Morales, P and Paredes, B (2011) Extremely long-lived stigmas allow extended cross-pollination opportunities in a High Andean plant. PLoS ONE 6, e19497. doi: 10.1371/journal.pone.0019497.CrossRefGoogle Scholar
Travers, SE, Mena-Ali, J and Stephenson, A (2004) Plasticity in the self-incompatibility system of Solanum carolinense. Plant Species Biology 19, 127135.CrossRefGoogle Scholar
Trunschke, J and Stöcklin, J (2017) Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany 127, 4151.CrossRefGoogle Scholar
Vargas, O and Pedraza, P (2003) Localización y ambiente físico del parque nacional natural Chingaza. In El Parque Nacional Natural Chingaza. Bogotá: Facultad de ciencias, Departamento de Biología, Universidad Nacional de Colombia.Google Scholar
Vogler, DW, Das, C and Stephenson, AG (1998) Phenotypic plasticity in the expression of self-incompatibility in Campanula rapunculoides . Heredity 81, 546555.CrossRefGoogle Scholar