Skip to main content
Log in

Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

Block pulse functions are piecewise constant and not smooth enough. Therefore, they offer limited accuracy when used to approximate functions and unable to find highly accurate numerical solutions of fractional differential equations (FDEs). To overcome this problem, we present in this paper a new efficient numerical method for solving FDEs. A hybrid Bernoulli polynomials and block pulse functions operational matrix of fractional order integrals is derived and used to convert the underlying FDEs into a system of algebraic equations. The solutions of the FDEs are obtained by solving the algebraic equations. Simulation examples are given to verify the effectiveness of our proposed method, and the results show that the method is much more efficient and accurate than other known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laroche, E., Knittel, D.: An improved linear fractional model for robustness analysis of a winding system. Control Eng. Pract. 13(5), 659–666 (2005)

    Article  Google Scholar 

  2. Momani, S., Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355(4–5), 271–279 (2006)

    Article  Google Scholar 

  3. Tang, Y., Liu, H., Wang, W., Lian, Q., Guan, X.: Parameter identification of fractional order systems using block pulse functions. Sig. Process. 107, 272–281 (2015)

    Article  Google Scholar 

  4. Lazopoulos, K.A., Karaoulanis, D.: On fractional modelling of viscoelastic mechanical systems. Mech. Res. Commun. 78, 1–5 (2016)

    Article  Google Scholar 

  5. Hu, M.H., Li, Y., Li, S., Fu, C., Qin, D., Li, Z.: Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 165, 153–163 (2018)

    Article  Google Scholar 

  6. Podlubny, I., Dorcak, L., Kostial, L.: On Fractional Derivatives, Fractional-Order Dynamic Systems and \({\text{PI}}^{\lambda } {\text{ D }}^{\mu }\)-controller, Proceedings of the \(36^{\text{ th }}\) Conference on & Decision Control (1997)

  7. Moghaddam, B.P., Dabiri, A., Tenreiro Machado, J.A.: Application of variable-order fractional calculus in solid mechanics. In: book: Applications in Engineering, Life and Social Sciences, Part A, 207–224 (2019)

  8. Hall, M.G., Barrick, T.R.: From diffusion-weighted MRI to anomalous diffusion imaging. Magn. Reson. Med. 59(3), 447–455 (2008)

    Article  Google Scholar 

  9. Zhao, C., Zhao, Y., Luo, L., Li, Y.: Fractional modeling method research on education evaluation. J. Softw. 6(5), 901–907 (2011)

    Google Scholar 

  10. Dabiri, A., Moghaddam, B.P., Tenreiro Machado, J.A.: Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math. 339, 40–48 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gejji, V., Bhalekar, S.: Solving multi-term linear and non-linear diffusion-wave equations of fractional order by adomian decomposition method. Appl. Math. Comput. 202(1), 113–120 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Song, L., Wang, W.: Approximate rational jacobi elliptic function solutions of the fractional differential equations via the enhanced adomian decomposition method. Phys. Lett. A 374(31–22), 3190–3196 (2010)

    Article  MathSciNet  Google Scholar 

  13. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  14. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7(3), 120–127 (2013)

    Article  Google Scholar 

  15. R, Y.M., Noorani, M., Hashim, I.: Variational iteration method for fractional heat- and wave-like equations. Nonlinear Anal. 10(3), 1854–1869 (2009)

  16. Inc, M.: The approximate and exact solutions of the space and time fractional burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ertürk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ertürk, V.S., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1642–1654 (2008)

    Article  MathSciNet  Google Scholar 

  19. Allahviranloo, T., Sahihi, H.: Reproducing kernel method to solve parabolic partial differential equations with nonlocal conditions. Numer. Methods Partial Differ. Equ. 36(6), 1758–1772 (2020)

    Article  MathSciNet  Google Scholar 

  20. Singh, J., Ahmadian, A., Rathore, S., Kumar, D., Baleanu, D., Salimi, M., Salahshour, S.: An efficient computational approach for local fractional Poisson equation in fractal media. Numerical Methods for Partial Differential Equations 1–10 (2020)

  21. Momani, S., Odibat, Z.: A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized taylor’s formula. J. Comput. Appl. Math. 220(1–2), 85–95 (2008)

    Article  MathSciNet  Google Scholar 

  22. Allahviranloo, T.: Fuzzy Fractional Differential Operational Equations. Springer, Berlin

  23. Yi, M., Huang, J.: Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl. Math. Comput. 230(2), 383–394 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Zhao, W.: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 216(8), 2276–2285 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lepik, U.: Solving fractional integral equations by the haar wavelet method. Appl. Math. Comput. 214(2), 468–478 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Li, Y., Sun, N.: Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Comput. Math. Appl. 62(3), 1046–1054 (2011)

    Article  MathSciNet  Google Scholar 

  27. Bouafoura, M., Moussi, O., Braiek, N.: A fractional state space realization method with block pulse basis. Sig. Process. 91(3), 492–497 (2011)

    Article  Google Scholar 

  28. Zhu, L., Fan, Q.: Solving fractional nonlinear fredholm integro-differential equations by the second kind chebyshev wavelet. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2333–2341 (2012)

    Article  MathSciNet  Google Scholar 

  29. Li, Y.: Solving a nonlinear fractional differential equation using chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2284–2292 (2010)

    Article  MathSciNet  Google Scholar 

  30. Hrynkiewicz, E.: Frequency multiplication with utilisation of walsh functions. Discrete Event Syst. Design 42(21), 166–171 (2009)

    Google Scholar 

  31. Dick, J., Pillichshammer, F.: Multivariate integration in weighted hilbert spaces based on walsh functions and weighted sobolev spaces. J. Complexity 21(2), 149–195 (2005)

    Article  MathSciNet  Google Scholar 

  32. Khalil, H., Khan, R.A.: A new method based on legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math. Appl. 67(10), 1938–1953 (2014)

    Article  MathSciNet  Google Scholar 

  33. Dizicheh, A.K., Salahshour, S., Ahmadian, A., Baleanu, D.: A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane-Emden equations. Appl. Numer. Math. 153, 443–456 (2020)

    Article  MathSciNet  Google Scholar 

  34. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for optimal control of systems described by integro-differential equations. Appl. Math. Model. 37(5), 3355–3368 (2013)

    Article  MathSciNet  Google Scholar 

  35. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    Article  MathSciNet  Google Scholar 

  36. Mashayekhi, S., Razzaghi, M.: Numerical solution of nonlinear fractional integro-differential equations by hybrid functions. Eng. Anal. Boundary Elem. 56, 81–89 (2015)

    Article  MathSciNet  Google Scholar 

  37. Sun, Z.: Congruences for bernoulli numbers and bernoulli polynomials. Discrete Math. 63(1–3), 153–163 (1997)

    Article  MathSciNet  Google Scholar 

  38. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for nonlinear constrained optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1831–1843 (2012)

    Article  MathSciNet  Google Scholar 

  39. Canuto, C., Hussiani, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Springer, Berlin (2006)

    Book  Google Scholar 

  40. Marzban, H.R., Tabrizidooz, H.R., Razzaghi, M.: A composite collocation method for the nonlinear mixed volterra-fredholm-hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1186–1194 (2011)

    Article  MathSciNet  Google Scholar 

  41. El-Sayed, A.M.A., El-Mesiry, A.M.A., El-Saka, A.M.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 160(3), 683–699 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Odibat, Z., Momani, S.: Modified homotopy perturbation method: Application to quadratic riccati differential equation of fractional order. Chaos, Solitons & Fractals 36(1), 167–174 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (No. 61771418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggan Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Tang, Y. & Zhang, X. Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions. Math Sci 15, 293–304 (2021). https://doi.org/10.1007/s40096-021-00379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00379-4

Keywords

Navigation