Skip to main content
Log in

SO-CCA secure PKE from pairing based all-but-many lossy trapdoor functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In a selective-opening chosen ciphertext (SO-CCA) attack on an encryption scheme, an adversary A has access to a decryption oracle, and after getting a number of ciphertexts, can then adaptively corrupt a subset of them, obtaining the plaintexts and corresponding encryption randomness. SO-CCA security requires the privacy of the remaining plaintexts being well protected. There are two flavors of SO-CCA definition: the weaker indistinguishability-based (IND) and the stronger simulation-based (SIM) ones. In this paper, we study SO-CCA secure PKE constructions from all-but-many lossy trapdoor functions (ABM-LTFs) in pairing-friendly prime order groups. Concretely,

  • we construct two ABM-LTFs with \(O(n/\log \lambda )\) size tags for n bits inputs and security parameter \(\lambda \), which lead to IND-SO-CCA secure PKEs with ciphertext size \(O(n/\log \lambda )\) to encrypt n bits messages. In addition, our second ABM-LTF enjoys tight security, so as the resulting PKE.

  • by equipping a lattice trapdoor for opening randomness, we show our ABM-LTFs are SIM-SO-CCA compatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We suppose that the tightly multi-pesudorandom MAC given in [30] can also be used here, however, the security loss of their construction is larger than that of the MAC in [42], although in the same level.

  2. Here note that \({\mathcal {T}}\supset {\mathcal {T}}_{\mathsf {loss}}\cup {\mathcal {T}}_{\mathsf {inj}}\), there may exist a tag \(t\in {\mathcal {T}}\) but \(t\notin {\mathcal {T}}_{\mathsf {loss}}\cup {\mathcal {T}}_{\mathsf {inj}}\).

References

  1. Agrawal S., Boneh D., Boyen X.: Efficient lattice (H)IBE in the standard model. In: Gilbert H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).

    Chapter  Google Scholar 

  2. Bellare M., Dowsley R., Waters B., Yilek S.: Standard security does not imply security against selective-opening. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  3. Bellare M., Hofheinz D., Yilek S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009).

    Chapter  Google Scholar 

  4. Bellare M., Rogaway P.: Optimal asymmetric encryption. In: Santis A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).

    Google Scholar 

  5. Bellare M., Waters B., Yilek S.: Identity-based encryption secure against selective opening attack. In: Ishai Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252. Springer, Heidelberg (2011).

    Google Scholar 

  6. Bellare M., Yilek S.: Encryption schemes secure under selective opening attack. Cryptology ePrint Archive, Report 2009/101 (2009).

  7. Blazy O., Kiltz E., Pan J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay J.A., Gennaro R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014).

    Google Scholar 

  8. Böhl F., Hofheinz D., Kraschewski D.: On definitions of selective opening security. In: Fischlin M., Buchmann J., Manulis M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 522–539. Springer, Heidelberg (2012).

    Google Scholar 

  9. Boneh D., Boyen X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyen X., Li Q.: All-but-many lossy trapdoor functions from lattices and applications. In: Katz J., Shacham H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 298–331. Springer, Heidelberg (2017).

    Chapter  Google Scholar 

  11. Boyen X., Waters B.: Shrinking the keys of discrete-log-type lossy trapdoor functions. In: Zhou J., Yung M. (eds.) ACNS 10. LNCS, vol. 6123, pp. 35–52. Springer, Heidelberg (2010).

    Google Scholar 

  12. Brakerski Z., Langlois A., Peikert C., Regev O., Stehlé D.: Classical hardness of learning with errors. In: Boneh D., Roughgarden T., Feigenbaum J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, New York (2013).

    Google Scholar 

  13. Canetti R., Halevi S., Katz J.: Adaptively-secure, non-interactive public-key encryption. In: Kilian J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer, Heidelberg (2005).

    Google Scholar 

  14. Dodis Y., Reyzin L., Smith A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin C., Camenisch J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).

    Chapter  Google Scholar 

  15. Dwork C., Naor M., Reingold O., Stockmeyer L.J.: Magic functions. In: 40th FOCS, pp. 523–534. IEEE Computer Society Press (1999).

  16. Escala A., Herold G., Kiltz E., Ràfols C., Villar J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti R., Garay J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  17. Fehr S., Hofheinz D., Kiltz E., Wee H.: Encryption schemes secure against chosen-ciphertext selective opening attacks. In: Gilbert H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010).

    Chapter  Google Scholar 

  18. Fujisaki E.: All-but-many encryption—a new framework for fully-equipped UC commitments. In: Sarkar P., Iwata T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014).

    Google Scholar 

  19. Gentry C., Sahai A., Waters B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti R., Garay J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  20. Goldwasser S., Micali S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  21. Hara K., Kitagawa F., Matsuda T., Hanaoka G., Tanaka K.: Simulation-based receiver selective opening CCA secure PKE from standard computational assumptions. In: Catalano D., De Prisco R. (eds.) SCN 18. LNCS, vol. 11035, pp. 140–159. Springer, Heidelberg (2018).

    Google Scholar 

  22. Hazay C., Patra A., Warinschi B.: Selective opening security for receivers. In: Iwata T., Cheon J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 443–469. Springer, Heidelberg (2015).

    Google Scholar 

  23. Hemenway B., Libert B., Ostrovsky R., Vergnaud D.: Lossy encryption: constructions from general assumptions and efficient selective opening chosen ciphertext security. In: Lee D.H., Wang X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011).

    Chapter  Google Scholar 

  24. Heuer F., Jager T., Kiltz E., Schäge S.: On the selective opening security of practical public-key encryption schemes. In: Katz J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 27–51. Springer, Heidelberg (2015).

    Google Scholar 

  25. Heuer F., Poettering B.: Selective opening security from simulatable data encapsulation. In: Cheon J.H., Takagi T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 248–277. Springer, Heidelberg (2016).

    Google Scholar 

  26. Hoang V.T., Katz J., O’Neill A., Zaheri M.: Selective-opening security in the presence of randomness failures. In: Cheon J.H., Takagi T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 278–306. Springer, Heidelberg (2016).

    Google Scholar 

  27. Hofheinz D.: All-but-many lossy trapdoor functions. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  28. Hofheinz D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson T., Nguyen P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  29. Hofheinz D., Jager T., Rupp A.: Public-key encryption with simulation-based selective-opening security and compact ciphertexts. In: Hirt M., Smith A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 146–168. Springer, Heidelberg (2016).

    Google Scholar 

  30. Hofheinz D., Jia D., Pan J.: Identity-based encryption tightly secure under chosen-ciphertext attacks. In: Peyrin T., Galbraith S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 190–220. Springer, Heidelberg (2018).

    Google Scholar 

  31. Hofheinz D., Kiltz E.: Programmable hash functions and their applications. In: Wagner D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008).

    Chapter  Google Scholar 

  32. Hofheinz D., Rao V., Wichs D.: Standard security does not imply indistinguishability under selective opening. In: Hirt M., Smith A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 121–145. Springer, Heidelberg (2016).

    Google Scholar 

  33. Huang Z., Lai J., Chen W., Au M.H., Peng Z., Li J.: Simulation-based selective opening security for receivers under chosen-ciphertext attacks. Des. Codes Cryptogr. 87(6), 1345–1371 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang Z., Liu S., Qin B.: Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited. In: Kurosawa K., Hanaoka G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013).

    Google Scholar 

  35. Jarecki S., Lysyanskaya A.: Adaptively secure threshold cryptography: introducing concurrency, removing erasures. In: Preneel B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000).

    Chapter  Google Scholar 

  36. Jia D., Lu X., Li B.: Receiver selective opening security from indistinguishability obfuscation. In: Dunkelman O., Sanadhya S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 393–410. Springer, Heidelberg (2016).

    Chapter  Google Scholar 

  37. Jia D., Lu X., Li B.: Constructions secure against receiver selective opening and chosen ciphertext attacks. In: Handschuh H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 417–431. Springer, Heidelberg (2017).

    Google Scholar 

  38. Krawczyk H., Rabin T.: Chameleon signatures. In: NDSS 2000. The Internet Society (2000).

  39. Kunz-Jacques S., Pointcheval D.: About the security of MTI/C0 and MQV. In: Prisco R.D., Yung M. (eds.) SCN 06. LNCS, vol. 4116, pp. 156–172. Springer, Heidelberg (2006).

    Google Scholar 

  40. Lai J., Deng R.H., Liu S., Weng J., Zhao Y.: Identity-based encryption secure against selective opening chosen-ciphertext attack. In: Nguyen P.Q., Oswald E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg (2014).

    Chapter  Google Scholar 

  41. Lewko A.B., Sahai A., Waters B.: Revocation systems with very small private keys. In: 2010 IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society Press (2010).

  42. Libert B., Qian C.: Lossy algebraic filters with short tags. In: Lin D., Sako K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 34–65. Springer, Heidelberg (2019).

    Google Scholar 

  43. Libert B., Sakzad A., Stehlé D., Steinfeld R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz J., Shacham H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 332–364. Springer, Heidelberg (2017). Cryptology ePrint Archive, Report 2017/876 (2017).

    Chapter  Google Scholar 

  44. Liu S., Paterson K.G.: Simulation-based selective opening CCA security for PKE from key encapsulation mechanisms. In: Katz J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 3–26. Springer, Heidelberg (2015).

    Google Scholar 

  45. Lyu L., Liu S., Han S., Gu D.: Tightly SIM-SO-CCA secure public key encryption from standard assumptions. In: Abdalla M., Dahab R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 62–92. Springer, Heidelberg (2018).

    Google Scholar 

  46. Micciancio D., Peikert C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  47. Micciancio D., Regev O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press (2004).

  48. Paillier P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).

    Google Scholar 

  49. Peikert C., Waters B.: Lossy trapdoor functions and their applications. In: Ladner R.E., Dwork C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, New York (2008).

    Google Scholar 

  50. Regev O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow H.N., Fagin R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, New York (2005).

    Google Scholar 

  51. Waters B.R.: Efficient identity-based encryption without random oracles. In: Cramer R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful comments. The first author is supported by the National Nature Science Foundation of China (No. 61772515), Beijing Municipal Science & Technology Commission (Project Number: Z191100007119006), and the National Cryptography Development Fund (No. MMJJ20170116). The second author is supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). This work is also partially supported by Indo French Center for the Promotion of Advanced Research (IFCPAR, project number: 6002-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingding Jia.

Additional information

Communicated by D. Stebila.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Libert, B. SO-CCA secure PKE from pairing based all-but-many lossy trapdoor functions. Des. Codes Cryptogr. 89, 895–923 (2021). https://doi.org/10.1007/s10623-021-00849-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00849-9

Keywords

Mathematics Subject Classification

Navigation