Skip to main content
Log in

How Interphase Properties Control the Young’s Modulus and Yield Strength of Polymer Nanocomposites?

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this article, several models are applied to reveal the effects of volume fraction, thickness, strength and modulus of interphase region between polymer matrix and nanofiller on the Young’s modulus and yield strength of polymer nanocomposites. The properties of interphase are calculated for several samples by experimental data of mechanical properties. It is found that the concentration of interphase is higher than that of nanofiller in some samples. The Young’s modulus of nanocomposites largely depends on filler and interphase concentrations. In addition, the highest fraction and strength of interphase region produce the highest yield strength of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zare, Y. and Rhee, K.Y., Evaluation and Development of Expanded Equations Based on Takayanagi Model for Tensile Modulus of Polymer Nanocomposites Assuming the Formation of Percolating Networks, Phys. Mesomech., 2018, vol. 21, no. 4, pp. 351–357.

  2. Panin, V.E., Surikova, N.S., Smirnova, A.S., and Pochivalov, Yu.I., Mesoscopic Structural States in Plastically Deformed Nanostructured Metal Materials, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 396–400.https://doi.org/10.1134/S102995991805003X

  3. Nikonov, A.Yu., Zharmukhambetova, A.M., Ponomareva, A.V., and Dmitriev, A.I., Numerical Study of Mechanical Properties of Nanoparticles of β-Type Ti-Nb Alloy under Conditions Identical to Laser Sintering. Multilevel Approach, Phys. Mesomech., 2018, vol. 21, no. 1, pp. 43–51.

  4. Badamshina, E.R., Goldstein, R.V., Ustinov, K.B., and Estrin, Ya.I., Strength and Fracture Toughness of Polyurethane Elastomers Modified with Carbon Nanotubes, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 187–192.

  5. Mauroy, H., Plivelic, T.S., Suuronen, J.-P., Hage, F.S., Fossum, J.O., and Knudsen, K.D., Anisotropic Clay–Polystyrene Nanocomposites: Synthesis, Characterization and Mechanical Properties, Appl. Clay Sci., vol. 108, pp. 19–27.

  6. Boumbimba, R.M., Wang, K., Bahlouli, N., Ahzi, S., Rémond, Y., and Addiego, F., Experimental Investigation and Micromechanical Modeling of High Strain Rate Compressive Yield Stress of a Melt Mixing Polypropylene Organoclay Nanocomposites, Mech. Mater., 2012, vol. 52, pp. 58–68.

  7. Miyagawa, H., Rich, M.J., and Drzal, L.T., Amine-Cured Epoxy/Clay Nanocomposites. II. The Effect of the Nanoclay Aspect Ratio, J. Polym. Sci. B. Polym. Phys., 2004, vol. 42, pp. 4391–4400.

  8. Odegard, G., Clancy, T., and Gates, T., Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites, Polymer, 2005, vol. 46, pp. 553–562.

  9. Pontefisso, A., Zappalorto, M., and Quaresimin, M., An Efficient RVE Formulation for the Analysis of the Elastic Properties of Spherical Nanoparticle Reinforced Polymers, Comput. Mater. Sci., 2015, vol. 96, pp. 319–326.

  10. Hassanzadeh-Aghdam, M.K., Ansari, R., and Mahmoodi, M.J., Thermo-Mechanical Properties of Shape Memory Polymer Nanocomposites Reinforced by Carbon Nanotubes, Mech. Mater., 2019, vol. 129, pp. 80–98.

  11. Ishak, Z.M., Chow, W., and Takeichi, T., Compatibilizing Effect of SEBS-g-MA on the Mechanical Properties of Different Types of OMMT Filled Polyamide6/Polypropylene Nanocomposites, Compos. A. Appl. Sci. Manufact., 2008, vol. 39, pp. 1802–1814.

  12. Zare, Y. and Rhee, K.Y., Tensile Strength Prediction of Carbon Nanotube Reinforced Composites by Expansion of Cross-Orthogonal Skeleton Structure, Compos. B. Eng., 2019, vol. 161, pp. 601–607.

  13. Zare, Y. and Rhee, K.Y., Evaluation of the Tensile Strength in Carbon Nanotube-Reinforced Nanocomposites Using the Expanded Takayanagi Model, JOM, 2019, pp. 1–9.

  14. Zare, Y., Modeling Approach for Tensile Strength of Interphase Layers in Polymer Nanocomposites, J. Coll. Int. Sci., 2016, vol. 471, pp. 89–93.

  15. Lu, P., Leong, Y., Pallathadka, P., and He, C., Effective Moduli of Nanoparticle Reinforced Composites Considering Interphase Effect by Extended Double-Inclusion Model—Theory and Explicit Expressions, Int. J. Eng. Sci., 2013, vol. 73, pp. 33–55.

  16. Zare, Y., Determination of Polymer–Nanoparticles Interfacial Adhesion and Its Role in Shape Memory Behavior of Shape Memory Polymer Nanocomposites, Int. J. Adhes. Adhesiv., 2014, vol. 54, pp. 67–71.

  17. Ji, X.L., Jing, J.K., Jiang, W., and Jiang, B.Z., Tensile Modulus of Polymer Nanocomposites, Polymer Eng. Sci., 2002, vol. 42, pp. 983–993.

  18. Pukanszky, B., Influence of Interface Interaction on the Ultimate Tensile Properties of Polymer Composites, Composites, 1990, vol. 21, pp. 255–262.

  19. Szazdi, L., Pozsgay, A., and Pukanszky, B., Factors and Processes Influencing the Reinforcing Effect of Layered Silicates in Polymer Nanocomposites, Eur. Polymer J., 2007, vol. 43, pp. 345–359.

  20. Dominkovics, Z., Hári, J., Kovács, J., Fekete, E., and Pukánszky, B., Estimation of Interphase Thickness and Properties in PP/Layered Silicate Nanocomposites, Eur. Polymer J., 2011, vol. 47, pp. 1765–1774.

  21. Chang, Y.W., Kim, S., and Kyung, Y., Poly (Butylene Terephthalate)–Clay Nanocomposites Prepared by Melt Intercalation: Morphology and Thermomechanical Properties, Polymer Int., 2005, vol. 54, pp. 348–353.

  22. Hu, Y., Shen, L., Yang, H., Wang, M., Liu, T., Liang, T., and Zhang, J., Nanoindentation Studies on Nylon 11/Clay Nanocomposites, Polym. Test, 2006, vol. 25, pp. 492–497.

  23. Kontou, E. and Niaounakis, M., Thermo-Mechanical Properties of LLDPE/SiO2 Nanocomposites, Polymer, 2006, vol. 47, pp. 1267–1280.

  24. Yeh, M.-K., Hsieh, T.-H., and Tai, N.-H., Fabrication and Mechanical Properties of Multi-Walled Carbon Nanotubes/Epoxy Nanocomposites, Mater. Sci. Eng. A, 2008, vol. 483, pp. 289–292.

  25. Isayev, A., Kumar, R., and Lewis, T.M., Ultrasound Assisted Twin Screw Extrusion of Polymer–Nanocomposites Containing Carbon Nanotubes, Polymer, 2009, vol. 50, pp. 250–260.

  26. Li, Y., Waas, A.M., and Arruda, E.M., The Effects of the Interphase and Strain Gradients on the Elasticity of Layer by Layer (LBL) Polymer/Clay Nanocomposites, Int. J. Solid. Struct., 2011, vol. 48, pp. 1044–1053.

  27. Boutaleb, S., Zanri, F., Mesbah, A., Naпt-Abdelaziz, M., Gloaguen, J.-M., Boukharouba, T., and Lefebvre, J.-M., Micromechanics-Based Modelling of Stiffness and Yield Stress for Silica/Polymer Nanocomposites, Int. J. Solid. Struct., 2009, vol. 46, pp. 1716–1726.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-Y. Rhee.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 1, pp. 104–111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, KY. How Interphase Properties Control the Young’s Modulus and Yield Strength of Polymer Nanocomposites?. Phys Mesomech 23, 531–537 (2020). https://doi.org/10.1134/S1029959920060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920060089

Keywords

Navigation