Skip to main content
Log in

Syntheses, crystal structures and magnetic properties of two new cyano-bridged bimetallic complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two complexes [Fe(1,10-phen)2Ni(CN)4]n (1), {[Fe2(1,10-phen)4(CN)4Co2(1,10-phen)2Fe(CN)6]·2H2O}n (2) were prepared in the reaction of K3[Fe(CN)6] as cyanometalate anions with different metal cations such as Co2+ or Ni2+ under hydrothermal conditions in the presence of 1,10-phenanthroline (1,10-phen). The X-ray crystallographic studies suggested that the two cations Fe2+ and Ni2+ are alternately bridged by the cyanide ligands to form a 1D zigzag chain with 1,10-phen terminal ligands in complex 1. While the cyanide groups bridge Fe2+ and Co2+ ions form step-like chain constituted by pentanuclear structural unit [Fe2(1,10-phen)4(CN)4Co2(1,10-phen)2Fe(CN)6] in complex 2. It had been found that the structures of these complexes are metal ion dependent. The magnetic behavior of complexes 1 and 2 was studied and the nature of the magnetic interactions could not be adequately fit to several different models. Antiferromagnetic interactions appear to dominate in complex 1, and complex 2 is complicated by the orbital contribution to the magnetic susceptibility from the anisotropic Co2+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toma O, Mercier N, Allain M, Kassiba AA, Bellat J-P, Weber G, Bezverkhyy I (2015) Inorg Chem 54:8923–8930

    CAS  PubMed  Google Scholar 

  2. Guo F-S, Day BM, Tong Y-C, Chen M-L (2018) A Mansikkamäki, RA Layfield. Science 362(6421):1400–1403

    CAS  PubMed  Google Scholar 

  3. James SL (2003) Chem Soc Rev 32:276–288

    CAS  PubMed  Google Scholar 

  4. Maspoch D, Ruiz-Molina D, Veciana J (2004) J Mater Chem 14:2713–2723

    CAS  Google Scholar 

  5. Batten SR, Murray KS (2003) Coord Chem Rev 246:103–130

    CAS  Google Scholar 

  6. Giansiracusa MJ, Kostopoulos AK, Collison D, Winpenny REP, Chilton NF (2019) Chem Commun 55(49):7025–7028

    CAS  Google Scholar 

  7. Jin P-B, Zhai Y-Q, Yu K-X, Winpenny REP, Zheng Y-Z (2020) Angew Chem Int Ed. 59(24):9350–9354

    CAS  Google Scholar 

  8. Kong XJ, Ren YP, Chen WX, Long L-S, Zheng Z, Huang RB, Zheng LS (2008) Angew Chem Int Ed 47:2398–2401

    CAS  Google Scholar 

  9. Kong XJ, Ren YP, Chen WX, Long L-S, Zheng Z, Huang RB, Zheng L-S (2007) J Am Chem Soc 129:7016–7017

    CAS  PubMed  Google Scholar 

  10. Tasiopoulos AJ, Vinslava WA, Wernsdorfer KA, Christou G (2004) Angew Chem Int Ed 43:2117–2121

    CAS  Google Scholar 

  11. Tranchemontagne DJ, Mendoza-Corts JL, O’Keeffe M, Yaghi OM (2009) Chem Soc Rev 38:1257–1283

    CAS  PubMed  Google Scholar 

  12. Perry JJ, Perman JA, Zaworotko MJ (2009) Chem Soc Rev 38:1400–1417

    CAS  PubMed  Google Scholar 

  13. Sieklucka B, Podgajny R, Pinkowicz D, Nowicka B, Korzeniak T, Balanda M, Wasiutynski T, Pelka R, Makarewicz M, Czapla M, Rams M, Gawel B, Lasocha W (2009) CrystEngComm 11:2032–2039

    CAS  Google Scholar 

  14. Beltran LMC, Long JR (2005) Acc Chem Res 38:325–334

    CAS  PubMed  Google Scholar 

  15. Miller JS, Manson JL (2001) Acc Chem Res 34:563–570

    CAS  PubMed  Google Scholar 

  16. Dunbar KR, Heintz RA (2009) Prog Inorg Chem 56:155–334

    Google Scholar 

  17. Zhang JJ, Lachgar A (2015) Inorg Chem 54:1082–1090

    CAS  PubMed  Google Scholar 

  18. Cui S, Zuo M, Wang H, Xu J, Anorg Z (2015) Allg Chem 641:1540–1544

    CAS  Google Scholar 

  19. Cui SX, Wang HY, Xu J, Zhang JP (2017) Russ J Phys Chem A 91:1070–1075

    CAS  Google Scholar 

  20. Pajerowski DM, Gardner JE, Talham DR, Meisel MW (2009) J Am Chem Soc 131:12927–12936

    CAS  PubMed  Google Scholar 

  21. Behera JN, D’Alessandro DM, Soheilnia N, Long JR (2009) Chem Mater 21:1922–1926

    CAS  Google Scholar 

  22. Li DF, Clerac R, Roubeau O, Harte E, Mathoniere C, Le Bris R, Holmes SM (2008) J Am Chem Soc 130:252–258

    CAS  PubMed  Google Scholar 

  23. Li A-L, Qu Y-H, Fu L, Han C, Cui G-H (2020) CrystEngComm. 22:2656–2666

    CAS  Google Scholar 

  24. Shi Y-S, Xiao Q-Q, Fu L, Cui G-H (2020) CrystEngComm 22:4875–4886

    CAS  Google Scholar 

  25. Liu J-J, Lu Y-W, Lu W-B (2020) CrystEngComm 22:2121–2127

    CAS  Google Scholar 

  26. Hu JX, Zhang YJ, Xu Y, Zhuang PF, Zheng H, Zhao L, Jiao CQ, Liu T (2014) Inorg Chem Commun 47:155–158

    CAS  Google Scholar 

  27. Kopotkov VA, Yagubskii EB, Simonov SV, Zorina LV, Starichenko DV, Korolyov AV, Ustinov VV, Shvachko YN (2014) New J Chem 38:4167–4176

    CAS  Google Scholar 

  28. Li ST, Zhao CC, Cui AL, Kou HZ (2014) Trans Met Chem 39:387–392

    CAS  Google Scholar 

  29. Zhang DP, Si WJ, Wang P, Chen X, Jiang JZ (2014) Inorg Chem 53:3494–3502

    CAS  PubMed  Google Scholar 

  30. Shen XP, Zhou HB, Yan JH, Li YF, Zhou H (2014) Inorg Chem 53:116–127

    CAS  PubMed  Google Scholar 

  31. Li JY, Ni ZP, Yan Z, Zhang ZM, Chen YC, Liu W, Tong ML (2014) CrystEngComm 16:6444–6449

    CAS  Google Scholar 

  32. Gor K, Kurkcuoglu GS, Yesilel OZ, Buyukgungor O (2014) J Mol Struct 1060:166–175

    CAS  Google Scholar 

  33. Marchivie M, Guionneau P, Howard JAK, Chastanet G, Létard J-F, Goeta AE, Chasseau D (2002) J Am Chem Soc 124:194–195

    CAS  PubMed  Google Scholar 

  34. Kartal Z, Sahin O, Yavuz A (2018) J Mol Struct 1171:578–586

    CAS  Google Scholar 

  35. Sun H, He M-L, Zhao W, Zhang L-F, Ni Z-H (2018) Inorg Chim Acta 482:48–52

    CAS  Google Scholar 

  36. Reczynski M, Nowicka B, Nather C, Kozieł M, Nakabayashi K, Ohkoshi S, Sieklucka B (2018) Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.8b01992

    Article  Google Scholar 

  37. Wang H, Zhu Q, Li H, Xie C, Zeng D (2018) Cryst Growth Des 18(10):5780–5789

    CAS  Google Scholar 

  38. Bhata MA, Lone SH, Butcher RJ, Srivastava SK (2018) J Mol Struct 1168:242–249

    Google Scholar 

  39. Ismayilov RH, Valiyev FF, Tagiyev DB, Song Y, ValiIsrafilov N, Wang W-Z, Lee G-H, Peng S-M, Suleimanov BA (2018) Inorg Chim Acta 483:386–391

    CAS  Google Scholar 

  40. Kahn O (1993) Molecular Magnetism. VCH, New York

    Google Scholar 

  41. Starynowicz P (1999) COSABS99, Program for Absorption Correction, University of Wroclaw. Wroclaw, Poland

    Google Scholar 

  42. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    CAS  PubMed  Google Scholar 

  43. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Google Scholar 

  44. Wang Y, Zhou H, Shen X, Yuan A (2014) Inorg Chim Acta 414:53–58

    CAS  Google Scholar 

  45. Jiang L, Feng X-L, Lu T-B, Gao S (2006) Inorg Chem 45:5018–5026

    CAS  PubMed  Google Scholar 

  46. Arnold PL, Potter NA, Magnani N, Apostolidis C, Griveau J-C, Colineau E, Morgenstern A, Caciuffo R, Love JB (2010) Inorg Chem 49:5341–5343

    CAS  PubMed  Google Scholar 

  47. Lim JH, Yoon JH, Choi SY, Ryu DW, Koh EK (2011) C S Hong 50:1749–1757

    CAS  Google Scholar 

  48. Yang C, Wang Q-L, Qi J, Ma Y, Yan S-P, Yang G-M, Cheng P, Liao D-Z (2011) Inorg Chem 50:4006–4015

    CAS  PubMed  Google Scholar 

  49. Lee JW, Lim KS, Ryu DW, Koh EK, Yoon SW, Suh BJ, Hong CS (2013) Inorg Chem 52:8677–8684

    CAS  PubMed  Google Scholar 

  50. Ostrovsky SM, Reu OS, Palii AV, Clemente-Leon M, Coronado E, Waerenborgh JC, Klokishner SI (2013) Inorg Chem 52:13536–13545

    CAS  PubMed  Google Scholar 

  51. Choi SW, Kwak HY, Yoon JH, Kim HC, Koh EK, Hong CS (2008) Inorg Chem 47:10214–10216

    CAS  PubMed  Google Scholar 

  52. Yoo HS, Ko HH, Ryu DW, Lee JW, Yoon JH, Lee WR, Kim HC, Koh EK, Hong CS (2009) Inorg Chem 48:5617–5619

    CAS  PubMed  Google Scholar 

  53. Constable EC, Neuburger M, Rösel P, Schneider GE, Zampese JA, Housecroft CE, Monti F, Armaroli N, Costa RD, Orti E (2013) Inorg Chem 52:885–897

    CAS  PubMed  Google Scholar 

  54. Goze C, Kozlov DV, Tyson DS, Ziessel R, Casellano FN (2003) New J Chem 27:1679–1683

    CAS  Google Scholar 

  55. Leroy-Lhez S, Fages F (2005) Eur J Org Chem. 2005:2684–2686

    Google Scholar 

  56. Roy S, Roy S, Saha S, Majumdar R, Dighe RR, Jemmis ED, Chakravarty AR (2011) Dalton Trans 40:1233–1242

    CAS  PubMed  Google Scholar 

  57. Basu U, Khan I, Koley D, Saha S, Kondaiah P, Chakravarty AR (2012) J Inorg Biochem 116:77–87

    CAS  PubMed  Google Scholar 

  58. Hussain M, El-Shafei A, Islam A, Han L (2013) Phys Chem Chem Phys 15:8401–8408

    CAS  PubMed  Google Scholar 

  59. Ji S, Wu W, Wu W, Song P, Han K, Wang Z, Liu S, Guo H, Zhao J (2010) J Mater Chem 20:1953–1963

    CAS  Google Scholar 

  60. Goze C, Sabatini C, Barbieri A, Barigelletti F, Ziessel R (2008) Eur J Inorg Chem 2008:1293–1299

    Google Scholar 

  61. Lin H-C, Straus DA, Johnson VA, Lu JE, Lopez L, Terrill RH (2012) Electrochim Acta 62:140–146

    CAS  Google Scholar 

  62. Cui S-X, Zhao Y-L, Li B, Zhang J-P, Liu Q, Zhang Y (2008) Polyhedron 27:671–678

    CAS  Google Scholar 

  63. Zhang Y, Li D, Clérac R, Kalisz M, Mathonière C, Holmes SM (2010) Angew Chem Int Ed 49:3752–3756

    CAS  Google Scholar 

  64. Shimamoto N, Ohkoshi S-I, Sato O, Hashimoto K (2002) Inorg Chem 41:678–684

    CAS  PubMed  Google Scholar 

  65. Sato O, Einaga Y, Iyoda T, Fujishima A, Hashimoto K (1999) Inorg Chem 38:4405–4412

    CAS  PubMed  Google Scholar 

  66. Qin L, Singleton J, Chen WP, Nojiri H, Engelhardt L, Winpenny REP, Zheng YZ (2017) Quantum Monte Carlo Simulations and High-Field Magnetization Studies of Antiferromagnetic Interactions in a Giant Hetero-Spin Ring. Angew Chem Int Ed 56:16571–16574

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Fundamental Research Fund for the Heilongjiang Provincial Universities (1355ZD001, 1353MSYQN004) and the Mudanjiang Normal University Key Project (GP2018002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxin Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 70699 KB)

Supplementary file2 (DOC 69699 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Zhu, B., Zhang, X. et al. Syntheses, crystal structures and magnetic properties of two new cyano-bridged bimetallic complexes. Transit Met Chem 46, 345–351 (2021). https://doi.org/10.1007/s11243-021-00451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00451-x

Navigation