Skip to main content
Log in

The islands of shape coexistence within the Elliott and the proxy-SU(3) Models

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A novel dual–shell mechanism for the phenomenon of shape coexistence in nuclei within the Elliott SU(3) and the proxy-SU(3) symmetry is proposed for all mass regions. It is supposed, that shape coexistence is activated by large quadrupole-quadrupole interaction and involves the interchange among the spin–orbit (SO) like shells within nucleon numbers 6–14, 14–28, 28–50, 50–82, 82–126, 126–184, which are being described by the proxy-SU(3) symmetry, and the harmonic oscillator (HO) shells within nucleon numbers 2–8, 8–20, 20–40, 40–70, 70–112, 112–168 of the Elliott SU(3) symmetry. The outcome is, that shape coexistence may occur in certain islands on the nuclear map. The dual–shell mechanism predicts without any free parameters, that nuclei with proton number (Z) or neutron number (N) between 7–8, 17–20, 34–40, 59–70, 96–112, 146–168 are possible candidates for shape coexistence. In the light nuclei the nucleons flip from the HO shell to the neighboring SO–like shell, which means, that particle excitations occur. For this mass region, the predicted islands of shape coexistence, coincide with the islands of inversion. But in medium mass and heavy nuclei, in which the nucleons inhabit the SO–like shells, shape coexistence is accompanied by a merging of the SO–like shell with the open HO shell. The shell merging can be accomplished by the outer product of the SU(3) irreps of the two shells and represents the unification of the HO shell with the SO–like shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:The data for the plots can be given upon request from the corresponding author.]

References

  1. M.G. Mayer, Science 145(3636), 999 (1964). https://doi.org/10.1126/science.145.3636.999

    Article  ADS  Google Scholar 

  2. M.G. Mayer, Phys. Rev. 74(3), 235 (1948). https://doi.org/10.1103/physrev.74.235

    Article  ADS  Google Scholar 

  3. W. McLatchie, J.E. Kitching, W. Darcey, Phys. Lett. B 30, 529 (1969). https://doi.org/10.1016/0370-2693(69)90446-8

    Article  ADS  Google Scholar 

  4. D.G. Burke, G. Lovhoiden, J.C. Waddington, Phys. Lett. B 43(6), 470 (1973). https://doi.org/10.1016/0370-2693(73)90347-X

    Article  ADS  Google Scholar 

  5. P. Kleinheinz, R.K. Sheline, M.R. Maier, R.M. Diamond, F.S. Stephens, Phys. Rev. Lett. 32(2), 68 (1974). https://doi.org/10.1103/PhysRevLett.32.68

    Article  ADS  Google Scholar 

  6. B.C. Smith, Phys. Rev. C 19(3), 1107 (1979). https://doi.org/10.1103/PhysRevC.19.1107

    Article  ADS  Google Scholar 

  7. R.G. Lanier, G.L. Struble, L.G. Mann, I.C. Oelrich, I.D. Proctor, D.W. Heikkinen, Phys. Rev. C 22(1), 51 (1980). https://doi.org/10.1103/PhysRevC.22.51

    Article  ADS  Google Scholar 

  8. J.H. Hamilton, K.R. Baker, C.R. Bingham, E.L. Bosworth, H.K. Carter, J.D. Cole, R.W. Fink, G. Garcia Bermudez, G.W. Gowdy, K.J. Hofstetter, M.A. Ijaz, A.C. Kahler, B.D. Kern, W. Lourens, B. Martin, R.L. Mlekodaj, A.V. Ramayya, L.L. Riedinger, W.D. Schmidt-Ott, E.H. Spejewski, B.N. Subba Rao, E.L. Robinson, K.S. Toth, F. Turner, J.L. Weil, J.L. Wood, A. Xenoulis, E.F. Zganjar, Izv. Akad. Nauk SSSR, Ser.Fiz. 40(1), 18 (1976)

  9. J.D. Cole, A.V. Ramayya, J.H. Hamilton, H. Kawakami, B. van Nooijen, W.G. Nettles, L.L. Riedinger, F.E. Turner, C.R. Bingham, H.K. Carter, E.H. Spejewski, R.L. Mlekodaj, W.D. Schmidt-Ott, E.F. Zganjar, K.S.R. Sastry, F.T. Avignone, K.W. Toth, M.A. Ijaz, Phys. Rev. C 16(5), 2010 (1977). https://doi.org/10.1103/PhysRevC.16.2010

    Article  ADS  Google Scholar 

  10. W. Bohne, K.D. Buchs, H. Fuchs, K. Grabisch, D. Hilscher, U. Jahnke, H. Kluge, T.G. Masterson, H. Morgenstern, Nucl. Phys. A 284, 14 (1977). https://doi.org/10.1016/0375-9474(77)90682-0

    Article  ADS  Google Scholar 

  11. R. Middleton, J.D. Garrett, H.T. Fortune, Phys. Lett. B 39(3), 339 (1972). https://doi.org/10.1016/0370-2693(72)90133-5

    Article  ADS  Google Scholar 

  12. H.T. Fortune, M.N.I. Al-Jadir, R.R. Betts, J.N. Bishop, R. Middleton, Phys. Rev. C 19(3), 756 (1979). https://doi.org/10.1103/PhysRevC.19.756

    Article  ADS  Google Scholar 

  13. H.T. Fortune, A.E.L. Dieperink, Phys. Rev. C 19(3), 1112 (1979). https://doi.org/10.1103/PhysRevC.19.1112

    Article  ADS  Google Scholar 

  14. J. Ljungvall, A. Gorgen, M. Girod, J.P. Delaroche, A. Dewald, C. Dossat, E. Farnea, W. Korten, B. Melon, R. Menegazzo, A. Obertelli, R. Orlandi, P. Petkov, T. Pissulla, S. Siem, R.P. Singh, J. Srebrny, C. Theisen, C.A. Ur, J.J. Valiente-Dobon, K.O. Zell, M. Zielinska, Phys. Rev. Lett. 100(10), 102502 (2008). https://doi.org/10.1103/PhysRevLett.100.102502

    Article  ADS  Google Scholar 

  15. T.J. Mertzimekis, N. Benczer-Koller, J. Holden, G. Jakob, G. Kumbartzki, K.H. Speidel, R. Ernst, A. Macchiavelli, M. McMahan, L. Phair, P. Maier-Komor, A. Pakou, S. Vincent, W. Korten, Phys. Rev. C 64(2), 024314 (2001). https://doi.org/10.1103/PhysRevC.64.024314

    Article  ADS  Google Scholar 

  16. K. Kumar, J. Phys. G Nucl. Phys. 4(6), 849 (1978)

  17. K. Becker, G. Jung, K.H. Kobras, H. Wollnik, B. Pfeiffer, Z. Phys, A 319, 193 (1984). https://doi.org/10.1007/BF01415633

  18. J. Eberth, L. Cleemann, N. Schmal, ATOMKI Kozlem. 26, 12 (1984)

    Google Scholar 

  19. F. Schussler, J.A. Pinston, E. Monnand, A. Moussa, G. Jung, E. Koglin, B. Pfeiffer, R.V.F. Janssens, J. van Klinken, Nucl. Phys. A 339, 415 (1980). https://doi.org/10.1016/0375-9474(80)90024-X

    Article  ADS  Google Scholar 

  20. W. Korten, E. Bouchez, E. Clement, A. Chatillon, A. Gorgen, Y. Le Coz, C. Theisen, J. Wilson, J.M. Casandjian, G. de France, G. Sletten, T. Czosnyka, J. Iwanicki, M. Zielinska, C. Andreoiu, P. Butler, R.D. Herzberg, D. Jenkins, G. Jones, F. Becker, J. Gerl, W. Catford, C. Timis, Nucl. Phys. A 746, 90c (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.125

    Article  ADS  Google Scholar 

  21. A. Gorgen, E. Clement, E. Bouchez, A. Chatillon, W. Korten, Y. Le Coz, C. Theisen, C. Andreoiu, F. Becker, B. Blank, A. Burger, P. Butler, J.M. Casandjian, W. Catford, T. Czosnyka, P. Davies, S.P. Fox, G. de France, G. Georgiev, J. Gerl, H. Hubel, J. Iwanicki, D.G. Jenkins, F. Johnston-Theasby, P. Joshi, I. Matea, P. Napiorkowski, F. de Oliveira Santos, G. Sletten, C. Timis, R. Wadsworth, M. Zielinska, Acta Phys. Pol. B 36(4), 1281 (2005)

  22. E. Clement, A. Gorgen, W. Korten, E. Bouchez, A. Chatillon, J.P. Delaroche, M. Girod, H. Goutte, A. Hurstel, Y. Le Coz, A. Obertelli, S. Peru, C. Theisen, J.N. Wilson, M. Zielinska, C. Andreoiu, F. Becker, P.A. Butler, J.M. Casandjian, W.N. Catford, T. Czosnyka, G. de France, J. Gerl, R.D. Herzberg, J. Iwanicki, D.G. Jenkins, G.D. Jones, P.J. Napiorkowski, G. Sletten, C.N. Timis, Phys. Rev. C 75(5), 054313 (2007). https://doi.org/10.1103/PhysRevC.75.054313

    Article  ADS  Google Scholar 

  23. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83(4), 1467 (2011). https://doi.org/10.1103/revmodphys.83.1467

    Article  ADS  Google Scholar 

  24. T. Thomas, V. Werner, J. Jolie, K. Nomura, T. Ahn, N. Cooper, H. Duckwitz, A. Fitzler, C. Fransen, A. Gade, M. Hinton, G. Ilie, K. Jessen, A. Linnemann, P. Petkov, N. Pietralla, D. Radeck, Nucl. Phys. A 947, 203 (2016). https://doi.org/10.1016/j.nuclphysa.2015.12.010

    Article  ADS  Google Scholar 

  25. M.D. Glascock, E.W. Schneider, W.B. Walters, R.A. Meyer, Z. Phys. A 283, 415 (1977). https://doi.org/10.1007/BF01409524

  26. P.E. Garrett, K.L. Green, R.A.E. Austin, G.C. Ball, D.S. Bandyopadhyay, S. Colosimo, D.S. Cross, G.A. Demand, G.F. Grinyer, G. Hackman, W.D. Kulp, K.G. Leach, A.C. Morton, C.J. Pearson, A.A. Phillips, M.A. Schumaker, C.E. Svensson, J. Wong, J.L. Wood, S.W. Yates, Acta Phys. Pol. B 42(3–4), 799 (2011). https://doi.org/10.5506/APhysPolB.42.799

    Article  Google Scholar 

  27. M. Ionescu-Bujor, S. Aydin, A. Iordachescu, N. Marginean, S. Pascu, D. Bucurescu, C. Costache, N. Florea, T. Glodariu, A. Ionescu, R. Marginean, C. Mihai, R.E. Mihai, A. Mitu, A. Negret, C.R. Nita, A. Olacel, B. SaygI, L. Stroe, R. Suvaila, S. Toma, A. Turturica, Phys. Rev. C 102(4), 044311 (2020). https://doi.org/10.1103/PhysRevC.102.044311

    Article  ADS  Google Scholar 

  28. B. Olaizola, A.B. Garnsworthy, F.A. Ali, C. Andreoiu, G.C. Ball, N. Bernier, H. Bidaman, V. Bildstein, M. Bowry, R. Caballero-Folch, I. Dillmann, G. Hackman, P.E. Garrett, B. Jigmeddorj, A.I. Kilic, A.D. MacLean, H.P. Patel, Y. Saito, J. Smallcombe, C.E. Svensson, J. Turko, K. Whitmore, T. Zidar, Phys. Rev. C 100(2), 024301 (2019). https://doi.org/10.1103/PhysRevC.100.024301

    Article  ADS  Google Scholar 

  29. M. Siciliano, I. Zanon, A. Goasduff, P.R. John, T.R. Rodriguez, S. Peru, I. Deloncle, J. Libert, M. Zielinska, D. Ashad, D. Bazzacco, G. Benzoni, B. Birkenbach, A. Boso, T. Braunroth, M. Cicerchia, N. Cieplicka-Orynczak, G. Colucci, F. Davide, G. de Angelis, B. de Canditiis, A. Gadea, L.P. Gaffney, F. Galtarossa, A. Gozzelino, K. Hadynska-Klek, G. Jaworski, P. Koseoglou, S.M. Lenzi, B. Melon, R. Menegazzo, D. Mengoni, A. Nannini, D.R. Napoli, J. Pakarinen, D. Quero, P. Rath, F. Recchia, M. Rocchini, D. Testov, J.J. Valiente-Dobon, A. Vogt, J. Wiederhold, W. Witt, Phys. Rev. C 102(1), 014318 (2020). https://doi.org/10.1103/PhysRevC.102.014318

    Article  ADS  Google Scholar 

  30. J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, P. van Duppen, Phys. Rep. 215(3–4), 101 (1992). https://doi.org/10.1016/0370-1573(92)90095-H

    Article  ADS  Google Scholar 

  31. B.G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974)

    MATH  Google Scholar 

  32. M. Moshinsky, Y. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, vol. 9 (Harwood Academic Publishers, Harwood, 1996)

    MATH  Google Scholar 

  33. J.P. Elliott, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1240), 128 (1958). https://doi.org/10.1098/rspa.1958.0072

  34. J.P. Elliott, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1243), 562 (1958). https://doi.org/10.1098/rspa.1958.0101

  35. J.P. Elliott, M. Harvey, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 272(1351), 557 (1963). https://doi.org/10.1098/rspa.1963.0071

  36. J.P. Elliott, C.E. Wilsdon, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 302(1471), 509 (1968). https://doi.org/10.1098/rspa.1968.0033

  37. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95(6), 064325 (2017). https://doi.org/10.1103/PhysRevC.95.064325

    Article  ADS  Google Scholar 

  38. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95(6), 064326 (2017). https://doi.org/10.1103/PhysRevC.95.064326

    Article  ADS  Google Scholar 

  39. A. Martinou, D. Bonatsos, N. Minkov, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, J. Cseh, Eur. Phys. J. A 56(9), 239 (2020). https://doi.org/10.1140/epja/s10050-020-00239-0

    Article  ADS  Google Scholar 

  40. C.E. Wilsdon, A survey of the nuclear s-d shell, using the su(3) coupling scheme. Ph.D. thesis, University of Sussex (1965). https://ethos.bl.uk/Home.do. Ethos ID: 477554

  41. J. Vergados, Nucl. Phys. A 111(3), 681 (1968). https://doi.org/10.1016/0375-9474(68)90249-2

    Article  ADS  Google Scholar 

  42. O. Sorlin, M.G. Porquet, Progr. Part. Nucl. Phys. 61(2), 602 (2008). https://doi.org/10.1016/j.ppnp.2008.05.001

  43. K. Heyde, J. Jolie, R. Fossion, S.D. Baerdemacker, V. Hellemans, Phys. Rev. C 69(5), 054304 (2004). https://doi.org/10.1103/physrevc.69.054304

    Article  ADS  Google Scholar 

  44. J.E. García-Ramos, K. Heyde, EPJ Web Conf. 178, 05005 (2018). https://doi.org/10.1051/epjconf/201817805005

    Article  Google Scholar 

  45. F.H. Garcia, C. Andreoiu, G.C. Ball, A. Bell, A.B. Garnsworthy, F. Nowacki, C.M. Petrache, A. Poves, K. Whitmore, F.A. Ali, N. Bernier, S.S. Bhattacharjee, M. Bowry, R.J. Coleman, I. Dillmann, I. Djianto, A.M. Forney, M. Gascoine, G. Hackman, K.G. Leach, A.N. Murphy, C.R. Natzke, B. Olaizola, K. Ortner, E.E. Peters, M.M. Rajabali, K. Raymond, C.E. Svensson, R. Umashankar, J. Williams, D. Yates, Phys. Rev. Lett. 125(17), 172501 (2020). https://doi.org/10.1103/physrevlett.125.172501

    Article  ADS  Google Scholar 

  46. M. Harvey, The Nuclear SU(3) Model, Advances in Nuclear Physics, vol. 1, 1st edn. (Plenum Press, New York, United States, 1968)

  47. F.L. Claude Cohen-Tannoudji, Bernard Diu, Quantum Mechanics, vol. 1, Complement \(B_{VII}\), 1st edn. (Wiley, 1991)

  48. H.J. Lipkin, Lie Groups for Pedestrians (Dover Books on Physics, New York, NY, 2002)

    MATH  Google Scholar 

  49. V.K.B. Kota, SU(3) Symmetry in Atomic Nuclei (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-3603-8

  50. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  51. K.T.R. Davies, S.J. Krieger, Can. J. Phys. 69(1), 62 (1991). https://doi.org/10.1139/p91-010

    Article  ADS  Google Scholar 

  52. K.L.G. Heyde, The Nuclear Shell Model (Springer, Berlin, 1990). https://doi.org/10.1007/978-3-642-97203-4

  53. E. Fermi, J. Orear, Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago. Notes Compiled by Jay Orear . (University of Chicago Press, Chicago, 1950)

  54. W. Pauli, In Writings on Physics and Philosophy (Springer, Berlin, 1994), pp. 165–181

    Book  Google Scholar 

  55. J.C. Slater, Phys. Rev. 34(10), 1293 (1929). https://doi.org/10.1103/physrev.34.1293

    Article  ADS  Google Scholar 

  56. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

    Book  Google Scholar 

  57. J. Draayer, Y. Leschber, S. Park, R. Lopez, Comput. Phys. Commun. 56(2), 279 (1989). https://doi.org/10.1016/0010-4655(89)90024-6

    Article  ADS  Google Scholar 

  58. V.K.B. Kota. Simple formula for leading \(su(3)\) irreducible representation for nucleons in an oscillator shell. arXiv:1812.01810 (2018)

  59. A. Martinou, D. Bonatsos, N. Minkov, I.E. Assimakis, S. Sarantopoulou, S. Peroulis, Nucl. Theor. 37, 41 (2018). http://ntl.inrne.bas.bg/workshop/2018/proc.html

  60. A. Martinou, D. Bonatsos, Nuclear Structure Physics (CRC Press, Taylor and Francis Group, New York, 2020)

    Google Scholar 

  61. A. Martinou, D. Bonatsos, S. Sarantopoulou, I.E. Assimakis, N. Minkov, to be published (2021)

  62. D.J. Rowe, J. Phys. G: Nucl. Part. Phys. 43(2), 024011 (2016). https://doi.org/10.1088/0954-3899/43/2/024011

    Article  ADS  Google Scholar 

  63. J. Draayer, K. Weeks, Ann. Phys. 156(1), 41 (1984). https://doi.org/10.1016/0003-4916(84)90210-0

    Article  ADS  Google Scholar 

  64. J.P. Draayer, Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models, Contemporary Concepts in Physics, vol. 6 (Harwood Academic Publishers, New York, 1993)

    Google Scholar 

  65. P.O. Lipas, Algebraic approaches to nuclear structure : interacting boson and fermion models, Contemporary Concepts in Physics, vol. 6 (Harwood Academic Publishers, New York, 1993)

    Google Scholar 

  66. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (World Scientific Publishing Company, Singapore, 1998). https://doi.org/10.1142/3530

  67. O. Castaños, J.P. Draayer, Y. Leschber, Zeitschrift für Physik A Atomic Nuclei 329(1), 33 (1988). https://doi.org/10.1007/bf01294813

    Article  ADS  Google Scholar 

  68. D.J. Rowe, G. Thiamova, J.L. Wood, Phys. Rev. Lett. 97(20), 202501 (2006). https://doi.org/10.1103/physrevlett.97.202501

    Article  ADS  Google Scholar 

  69. M. Bouten, J. Elliott, J. Pullen, Nucl. Phys. A 97(1), 113 (1967). https://doi.org/10.1016/0375-9474(67)90774-9

    Article  ADS  Google Scholar 

  70. D. Bonatsos, EPJA 53(7), 148 (2017). https://doi.org/10.1140/epja/i2017-12346-x

    Article  ADS  Google Scholar 

  71. S. Nilsson, Dan. Mat. Fys. Medd. 29(16), 1 (1955)

    Google Scholar 

  72. R.B. Cakirli, K. Blaum, R.F. Casten, Phys. Rev. C 82(6), 061304(R) (2010). https://doi.org/10.1103/physrevc.82.061304

    Article  ADS  Google Scholar 

  73. D. Bonatsos, S. Karampagia, R.B. Cakirli, R.F. Casten, K. Blaum, L.A. Susam, Phys. Rev. C 88(5), 054309 (2013). https://doi.org/10.1103/physrevc.88.054309

    Article  ADS  Google Scholar 

  74. A. de Shalit, M. Goldhaber, Phys. Rev. 92(5), 1211 (1953). https://doi.org/10.1103/physrev.92.1211

    Article  ADS  Google Scholar 

  75. D. Bonatsos, H. Sobhani, H. Hassanabadi, Eur. Phys. J. Plus 135(9), 710 (2020). https://doi.org/10.1140/epjp/s13360-020-00749-2

    Article  Google Scholar 

  76. O. Castaños, M. Moshinsky, C. Quesne, Group Theory and Special Symmetries in Nuclear Physics (World Scientific, Singapore, 1992). https://doi.org/10.1142/1468

  77. I.E. Assimakis, Algebraic models of nuclear structure with su(3) symmetry. Master’s thesis, National Technical University of Athens (2015). https://doi.org/10.26240/heal.ntua.3240

  78. D. Bonatsos, A. Martinou, S. Sarantopoulou, I.E. Assimakis, S.K. Peroulis, N. Minkov, Eur. Phys. J. Spec. Top. 229, 2367 (2020). https://doi.org/10.1140/epjst/e2020-000034-3

    Article  Google Scholar 

  79. H. Morinaga, Phys. Rev. 101(1), 254 (1956). https://doi.org/10.1103/physrev.101.254

    Article  ADS  MathSciNet  Google Scholar 

  80. J. Cseh, G. Riczu, J. Darai, Phys. Lett. B 795, 160 (2019). https://doi.org/10.1016/j.physletb.2019.06.016

    Article  MathSciNet  Google Scholar 

  81. T. Otsuka, R. Fujimoto, Y. Utsuno, B.A. Brown, M. Honma, T. Mizusaki, The Nuclear Many-Body Problem 2001, NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 53 (Springer, New York, 2001)

    Google Scholar 

  82. A. Martinou, D. Bonatsos, N. Minkov, T.J. Mertzimekis, I.E. Assimakis, S. Peroulis, S. Sarantopoulou, HNPS Proceedings 26, 96 (2019). https://doi.org/10.12681/hnps.1804

  83. W. Geithner, S. Kappertz, M. Keim, P. Lievens, R. Neugart, L. Vermeeren, S. Wilbert, V.N. Fedoseyev, U. Kster, V.I. Mishin, V. Sebastian, I. Collaboration, Phys. Rev. Lett. 83(19), 3792 (1999). https://doi.org/10.1103/physrevlett.83.3792

    Article  ADS  Google Scholar 

  84. Y. Kondo, T. Nakamura, Y. Satou, T. Matsumoto, N. Aoi, N. Endo, N. Fukuda, T. Gomi, Y. Hashimoto, M. Ishihara, S. Kawai, M. Kitayama, T. Kobayashi, Y. Matsuda, N. Matsui, T. Motobayashi, T. Nakabayashi, T. Okumura, H. Ong, T. Onishi, K. Ogata, H. Otsu, H. Sakurai, S. Shimoura, M. Shinohara, T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, Y. Yanagisawa, Phys. Lett. B 690(3), 245 (2010). https://doi.org/10.1016/j.physletb.2010.05.031

    Article  ADS  Google Scholar 

  85. A. Alex, M. Kalus, A. Huckleberry, J. von Delft, J. Math. Phys. 52(2), 023507 (2011). https://doi.org/10.1063/1.3521562

    Article  ADS  MathSciNet  Google Scholar 

  86. S. Coleman, J. Math. Phys. 5(9), 1343 (1964). https://doi.org/10.1063/1.1704245

    Article  ADS  MathSciNet  Google Scholar 

  87. D. Troltenier, A. Blokhin, J.P. Draayer, D. Rompf, J.G. Hirsch, in AIP Conference Proceedings (AIP, 1996). https://doi.org/10.1063/1.50225

  88. S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78(1), 1 (2001). https://doi.org/10.1006/adnd.2001.0858

    Article  ADS  Google Scholar 

  89. D. Tilley, H. Weller, C. Cheves, Nucl. Phys. A 564(1), 1 (1993). https://doi.org/10.1016/0375-9474(93)90073-7

    Article  ADS  Google Scholar 

  90. C. Bahri, J. Escher, J. Draayer, Nucl. Phys. A 592(2), 171 (1995). https://doi.org/10.1016/0375-9474(95)00292-9

    Article  ADS  Google Scholar 

  91. G. Rosensteel, D. Rowe, Ann. Phys. 123(1), 36 (1979). https://doi.org/10.1016/0003-4916(79)90264-1

    Article  ADS  Google Scholar 

  92. G. Rosensteel, D. Rowe, Ann. Phys. 126(2), 343 (1980). https://doi.org/10.1016/0003-4916(80)90180-3

    Article  ADS  Google Scholar 

  93. D. Rowe, G. Rosensteel, Ann. Phys. 126(1), 198 (1980). https://doi.org/10.1016/0003-4916(80)90380-2

    Article  ADS  Google Scholar 

  94. E. Browne, R.B. Firestone, Tables of Isotopes, 7th edn. (Wiley, Amsterdam, 1978)

    Google Scholar 

  95. R.F. Casten, Nuclear Structure from a Simple Perspective. Oxford Science Publications (Oxford University Press, Oxford, 2000)

  96. V. Kota, U.D. Pramanik, Eur. Phys. J. A 3(3), 243 (1998). https://doi.org/10.1007/s100500050174

    Article  ADS  Google Scholar 

  97. I.E. Assimakis, D. Bonatsos, A. Martinou, S. Sarantopoulou, S. Peroulis, T.J. Mertzimekis, N. Minkov, HNPS Proceedings 26, 9 (2019). https://doi.org/10.12681/hnps.1789

  98. V. Prassa, T. Nikšić, D. Vretenar, Phys. Rev. C 88(4), 044324 (2013). https://doi.org/10.1103/physrevc.88.044324

    Article  ADS  Google Scholar 

  99. K. Karakatsanis, Applications of covariant density functional theory on nuclear structure problems. Ph.D. thesis, Aristotle University of Thessaloniki (2017). http://hdl.handle.net/10442/hedi/41280

  100. K.E. Karakatsanis, G.A. Lalazissis, V. Prassa, P. Ring, Phys. Rev. C 102(3), 034311 (2020). https://doi.org/10.1103/physrevc.102.034311

    Article  ADS  Google Scholar 

  101. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292(3), 413 (1977). https://doi.org/10.1016/0375-9474(77)90626-1

    Article  ADS  Google Scholar 

  102. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  103. P.G. Reinhard, Rep. Progress Phys. 52(4), 439 (1989). https://doi.org/10.1088/0034-4885/52/4/002

    Article  ADS  Google Scholar 

  104. P. Ring, Progress Particle Nucl. Phys. 37, 193 (1996). https://doi.org/10.1016/0146-6410(96)00054-3

    Article  ADS  Google Scholar 

  105. J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, L. Geng, Progress Particle Nucl. Phys. 57(2), 470 (2006). https://doi.org/10.1016/j.ppnp.2005.06.001

    Article  ADS  Google Scholar 

  106. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71(2), 024312 (2005). https://doi.org/10.1103/physrevc.71.024312

    Article  ADS  Google Scholar 

  107. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Comm. 185(6), 1808 (2014). https://doi.org/10.1016/j.cpc.2014.02.027

    Article  ADS  Google Scholar 

  108. R. Casten, Nucl. Phys. A 443(1), 1 (1985). https://doi.org/10.1016/0375-9474(85)90318-5

    Article  ADS  Google Scholar 

  109. P. Federman, S. Pittel, Phys. Lett. B 69(4), 385 (1977). https://doi.org/10.1016/0370-2693(77)90825-5

    Article  ADS  Google Scholar 

  110. P. Federman, S. Pittel, Phys. Rev. C 20(2), 820 (1979). https://doi.org/10.1103/physrevc.20.820

    Article  ADS  Google Scholar 

  111. K. Heyde, P.V. Isacker, R. Casten, J. Wood, Phys. Lett. B 155(5–6), 303 (1985). https://doi.org/10.1016/0370-2693(85)91575-8

    Article  ADS  Google Scholar 

  112. T. Kibédi, R. Spear, in AIP Conference Proceedings (AIP, 2005). https://doi.org/10.1063/1.1945043

  113. M. Ogawa, R. Broda, K. Zell, P.J. Daly, P. Kleinheinz, Phys. Rev. Lett. 41, 289 (1978). https://doi.org/10.1103/PhysRevLett.41.289

    Article  ADS  Google Scholar 

  114. P. Himpe, G. Neyens, D. Balabanski, G. Bélier, J. Daugas, F. de Oliveira Santos, M.D. Rydt, K. Flanagan, I. Matea, P. Morel, Y. Penionzhkevich, L. Perrot, N. Smirnova, C. Stodel, J. Thomas, N. Vermeulen, D. Yordanov, Y. Utsuno, T. Otsuka, Phys. Lett. B 658(5), 203 (2008). https://doi.org/10.1016/j.physletb.2007.11.017

  115. F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 27 (2016). https://doi.org/10.1103/physrevlett.117.272501

    Article  Google Scholar 

  116. P. Thirolf, D. Habs, Progr. Part. Nucl. Phys. 49(2), 325 (2002). https://doi.org/10.1016/s0146-6410(02)00158-8

  117. P.V. Isacker, D.D. Warner, D.S. Brenner, Phys. Rev. Lett. 74(23), 4607 (1995). https://doi.org/10.1103/physrevlett.74.4607

    Article  ADS  Google Scholar 

  118. P.V. Isacker, O. Juillet, B.K. Gjelsten, Found. Phys. 27(7), 1047 (1997). https://doi.org/10.1007/bf02551152

    Article  ADS  Google Scholar 

  119. A. Martinou, Nucleon–nucleon interaction in stable and astable nuclei. Ph.D. thesis, National Technical University of Athens (2018). http://hdl.handle.net/10442/hedi/43367

  120. X. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, M. Bissell, K. Blaum, B. Cheal, K. Flanagan, R.G. Ruiz, W. Gins, C. Gorges, L. Grob, H. Heylen, S. Kaufmann, M. Kowalska, J. Kraemer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nrtershuser, J. Papuga, R. Sánchez, D. Yordanov, Phys. Rev. Lett. 116(18), 182502 (2016). https://doi.org/10.1103/physrevlett.116.182502

    Article  ADS  Google Scholar 

  121. X. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, M. Bissell, K. Blaum, B. Cheal, K. Flanagan, R.G. Ruiz, W. Gins, C. Gorges, L. Grob, H. Heylen, S. Kaufmann, M. Kowalska, J. Kraemer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nrtershuser, J. Papuga, R. Sánchez, D. Yordanov, Phys. Rev. Lett. 116, 21 (2016). https://doi.org/10.1103/physrevlett.116.219901

    Article  Google Scholar 

  122. A. Gottardo, D. Verney, C. Delafosse, F. Ibrahim, B. Roussière, C. Sotty, S. Roccia, C. Andreoiu, C. Costache, M.C. Delattre, I. Deloncle, A. Etilé, S. Franchoo, C. Gaulard, J. Guillot, M. Lebois, M. MacCormick, N. Marginean, R. Marginean, I. Matea, C. Mihai, I. Mitu, L. Olivier, C. Portail, L. Qi, L. Stan, D. Testov, J. Wilson, D. Yordanov, Phys. Rev. Lett. 116(18), 182501 (2016). https://doi.org/10.1103/physrevlett.116.182501

    Article  ADS  Google Scholar 

  123. T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Rev. Mod. Phys. 92(1), 015002 (2020). https://doi.org/10.1103/revmodphys.92.015002

    Article  ADS  Google Scholar 

  124. J.D. Vergados, private communication (2018)

  125. F. Nowacki, A. Poves, J. Phys.: Conf. Ser. 966, 012023 (2018). https://doi.org/10.1088/1742-6596/966/1/012023

    Article  Google Scholar 

  126. R. Budaca, A.I. Budaca, Europhys. Lett. 123(4), 42001 (2018). https://doi.org/10.1209/0295-5075/123/42001

    Article  ADS  Google Scholar 

  127. R. Budaca, P. Buganu, A. Budaca, Nucl. Phys. A 990, 137 (2019). https://doi.org/10.1016/j.nuclphysa.2019.07.006

    Article  ADS  Google Scholar 

  128. P. Buganu, R. Budaca, A.I. Budaca, EPJ Web Conf. 194, 01007 (2018). https://doi.org/10.1051/epjconf/201819401007

    Article  Google Scholar 

  129. I. Talmi, Rev. Mod. Phys. 34(4), 704 (1962). https://doi.org/10.1103/revmodphys.34.704

    Article  ADS  Google Scholar 

  130. J. Dobaczewski, W. Nazarewicz, J. Skalski, T. Werner, Phys. Rev. Lett. 60(22), 2254 (1988). https://doi.org/10.1103/physrevlett.60.2254

    Article  ADS  Google Scholar 

  131. R.B. Cakirli, R.F. Casten, Phys. Rev. Lett. 96(13), 132501 (2006). https://doi.org/10.1103/physrevlett.96.132501

    Article  ADS  Google Scholar 

  132. M. Duer et al., CLAS Collaboration. Phys. Rev. Lett. 122(17), 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502

  133. J.E. García-Ramos, K. Heyde, Phys. Rev. C 100(4), 044315 (2019). https://doi.org/10.1103/physrevc.100.044315

    Article  ADS  Google Scholar 

  134. J.E. García-Ramos, K. Heyde. arXiv:2011.05581 [nucl-th] (2020)

  135. H. Esbensen, B.A. Brown, H. Sagawa, Phys. Rev. C 51(3), 1274 (1995). https://doi.org/10.1103/physrevc.51.1274

    Article  ADS  Google Scholar 

  136. D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, H. Weller, Nucl. Phys. A 745(3–4), 155 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.059

    Article  ADS  Google Scholar 

  137. W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M.L. Bissell, R. Cazan, G.W.F. Drake, C. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.C. Yan, D.T. Yordanov, C. Zimmermann, Phys. Rev. Lett. 102(6), 062503 (2009). https://doi.org/10.1103/physrevlett.102.062503

    Article  ADS  Google Scholar 

  138. A. Navin, D.W. Anthony, T. Aumann, T. Baumann, D. Bazin, Y. Blumenfeld, B.A. Brown, T. Glasmacher, P.G. Hansen, R.W. Ibbotson, P.A. Lofy, V. Maddalena, K. Miller, T. Nakamura, B.V. Pritychenko, B.M. Sherrill, E. Spears, M. Steiner, J.A. Tostevin, J. Yurkon, A. Wagner, Phys. Rev. Lett. 85(2), 266 (2000). https://doi.org/10.1103/physrevlett.85.266

    Article  ADS  Google Scholar 

  139. M. Kowalska, D.T. Yordanov, K. Blaum, P. Himpe, P. Lievens, S. Mallion, R. Neugart, G. Neyens, N. Vermeulen, Phys. Rev. C 77(3), 034307 (2008). https://doi.org/10.1103/physrevc.77.034307

    Article  ADS  Google Scholar 

  140. W. Schwerdtfeger, P.G. Thirolf, K. Wimmer, D. Habs, H. Mach, T.R. Rodriguez, V. Bildstein, J.L. Egido, L.M. Fraile, R. Gernhuser, R. Hertenberger, K. Heyde, P. Hoff, H. Hbel, U. Kster, T. Krll, R. Krcken, R. Lutter, T. Morgan, P. Ring, Phys. Rev. Lett. 103(1), 012501 (2009). https://doi.org/10.1103/physrevlett.103.012501

    Article  ADS  Google Scholar 

  141. K. Wimmer, T. Kröll, R. Krücken, V. Bildstein, R. Gernhäuser, B. Bastin, N. Bree, J. Diriken, P.V. Duppen, M. Huyse, N. Patronis, P. Vermaelen, D. Voulot, J.V. de Walle, F. Wenander, L.M. Fraile, R. Chapman, B. Hadinia, R. Orlandi, J.F. Smith, R. Lutter, P.G. Thirolf, M. Labiche, A. Blazhev, M. Kalkühler, P. Reiter, M. Seidlitz, N. Warr, A.O. Macchiavelli, H.B. Jeppesen, E. Fiori, G. Georgiev, G. Schrieder, S.D. Gupta, G.L. Bianco, S. Nardelli, J. Butterworth, J. Johansen, K. Riisager, Phys. Rev. Lett. 105(25), 252501 (2010). https://doi.org/10.1103/physrevlett.105.252501

    Article  ADS  Google Scholar 

  142. G. Saxena, D. Singh, M. Kaushik, Phys. Part. Nucl. Lett. 10(3), 220 (2013). https://doi.org/10.1134/s1547477113030114

    Article  Google Scholar 

  143. C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, F. Herfurth, A. Kellerbauer, H.J. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian, Eur. Phys. J. A 25, 33 (2005). https://doi.org/10.1140/epjad/i2005-06-029-9

    Article  ADS  Google Scholar 

  144. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At.Data Nucl.Data Tables 107, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.001

  145. G. Gürdal, F. Kondev, Nucl. Data Sheets 113(5), 1315 (2012). https://doi.org/10.1016/j.nds.2012.05.002

    Article  ADS  Google Scholar 

  146. S. Lalkovski, F. Kondev, Nucl. Data Sheets 124, 157 (2015). https://doi.org/10.1016/j.nds.2014.12.046

    Article  Google Scholar 

  147. J. Blachot, Nucl. Data Sheets 113(2), 515 (2012). https://doi.org/10.1016/j.nds.2012.02.002

    Article  ADS  Google Scholar 

  148. J. Blachot, Nucl. Data Sheets 111(3), 717 (2010). https://doi.org/10.1016/j.nds.2010.03.002

    Article  ADS  Google Scholar 

  149. K. Kitao, Nucl. Data Sheets 75(1), 99 (1995). https://doi.org/10.1006/ndsh.1995.1022

    Article  ADS  Google Scholar 

  150. K. Kitao, Y. Tendow, A. Hashizume, Nucl. Data Sheets 96(2), 241 (2002). https://doi.org/10.1006/ndsh.2002.0012

    Article  ADS  Google Scholar 

  151. M. Basunia, Nucl. Data Sheets 107(4), 791 (2006). https://doi.org/10.1016/j.nds.2006.03.001

    Article  ADS  Google Scholar 

  152. E. Achterberg, O. Capurro, G. Marti, Nucl. Data Sheets 110(7), 1473 (2009). https://doi.org/10.1016/j.nds.2009.05.002

    Article  ADS  Google Scholar 

  153. E. McCutchan, Nucl. Data Sheets 126, 151 (2015). https://doi.org/10.1016/j.nds.2015.05.002

    Article  ADS  Google Scholar 

  154. B. Singh, Nucl. Data Sheets 130, 21 (2015). https://doi.org/10.1016/j.nds.2015.11.002

    Article  ADS  Google Scholar 

  155. C.M. Baglin, Nucl. Data Sheets 111(2), 275 (2010). https://doi.org/10.1016/j.nds.2010.01.001

    Article  ADS  Google Scholar 

  156. C.M. Baglin, Nucl. Data Sheets 99(1), 1 (2003). https://doi.org/10.1006/ndsh.2003.0007

    Article  ADS  Google Scholar 

  157. F. Kondev, S. Juutinen, D. Hartley, Nucl. Data Sheets 150, 1 (2018). https://doi.org/10.1016/j.nds.2018.05.001

    Article  ADS  Google Scholar 

  158. B. Singh, Nucl. Data Sheets 99(2), 275 (2003). https://doi.org/10.1006/ndsh.2003.0009

    Article  ADS  Google Scholar 

  159. G. Lalazissis, S. Raman, P. Ring, Atom. Data Nucl. Data Tables 71(1), 1 (1999). https://doi.org/10.1006/adnd.1998.0795

    Article  ADS  Google Scholar 

  160. T. Nikšić, D. Vretenar, P. Ring, G.A. Lalazissis, Phys. Rev. C 65, 5 (2002). https://doi.org/10.1103/physrevc.65.054320

    Article  Google Scholar 

  161. D.J. Rowe, Phys. Rev. C 101, 5 (2020). https://doi.org/10.1103/physrevc.101.054301

    Article  Google Scholar 

  162. E. Caurier, F. Nowacki, A. Poves, Nucl. Phys. A 693(1–2), 374 (2001). https://doi.org/10.1016/s0375-9474(00)00579-0

    Article  ADS  Google Scholar 

  163. E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Phys. Rev. C 75, 5 (2007). https://doi.org/10.1103/physrevc.75.054317

    Article  Google Scholar 

  164. E. Caurier, F. Nowacki, A. Poves, Phys. Rev. C 90, 1 (2014). https://doi.org/10.1103/physrevc.90.014302

    Article  Google Scholar 

  165. T. Otsuka, Y. Tsunoda, T. Abe, N. Shimizu, P.V. Duppen, Phys. Rev. Lett. 123(22), 222502 (2019). https://doi.org/10.1103/physrevlett.123.222502

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriana Martinou.

Additional information

Communicated by Nicolas Alamanos

Financial support by the Greek State Scholarships Foundation (IKY) and the European Union within the MIS 5033021 action, by the Bulgarian National Science Fund (BNSF) under Contract No.KP-06-N48/1 and by the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique Fédérale de Lausanne and the Project No. TTP-2018-07-3554 Exotic Nuclear Structure and Dynamics with funds of the Croatian-Swiss Research Programme is gratefully acknowledged.

Discussions with R. F. Casten, K. Blaum and J. Cseh improved considerably the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinou, A., Bonatsos, D., Mertzimekis, T.J. et al. The islands of shape coexistence within the Elliott and the proxy-SU(3) Models. Eur. Phys. J. A 57, 84 (2021). https://doi.org/10.1140/epja/s10050-021-00396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00396-w

Navigation