Skip to main content
Log in

2-designs and redundant syndrome extraction for quantum error correction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Imperfect measurement can degrade a quantum error correction scheme. A solution that restores fault tolerance is to add redundancy to the process of syndrome extraction. In this work, we show how to optimize this process for an arbitrary ratio of data qubit error probability to measurement error probability. The key is to design the measurements so that syndromes that correspond to different errors are separated by the maximum distance in the signal space, in close analogy to classical error correction codes. We find that the mathematical theory of 2-designs, appropriately modified, is the right tool for this. Analytical and simulation results for the bit-flip code, the 5-qubit code, and the Steane code are presented. The results show that design-based redundancy protocols show improvement in both cost and performance relative to conventional fault-tolerant error-correction schemes in situations, quite important in practice, where measurement errors are common. In the near term, the construction of a fault-tolerant logical qubit with a small number of noisy physical qubits will benefit from targeted redundancy in syndrome extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65 (1996)

  2. Preskill, J.: Fault-tolerant quantum computing. In: Lo, H.-K., Spiller, T., Popescu, S. (eds.) Introduction to Quantum Computation and Information. World Scientific, Singapore (1999)

    Google Scholar 

  3. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. DiVincenzo, D.P., Shor, P.W.: Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260–3263 (1996)

    Article  ADS  Google Scholar 

  5. Steane, A.M.: Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett. 78, 2252 (1997)

    Article  ADS  Google Scholar 

  6. Fujiwara, Y.: Ability of stabilizer quantum error correction to protect itself from its own imperfection. Phys. Rev. A 90, 062304 (2014)

    Article  ADS  Google Scholar 

  7. Fujiwara, Y., Gruner, A., Vandendriessche, P.: High-rate quantum low-density parity-check codes assisted by reliable qubits. IEEE Trans. Inf. Theory 61(4), 1860–1878 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ashikhmin, A., Lai, C., Brun, T.A.: Robust quantum error syndrome extraction by classical coding. In: 2014 IEEE International Symposium on Information Theory, pp. 546–550 (2014)

  9. Crow, D., Joynt, R., Saffman, M.: Improved error thresholds for measurement-free error correction. Phys. Rev. Lett. 117, 130503 (2016)

    Article  ADS  Google Scholar 

  10. Pless, V.: Introduction to the Theory of Error-Correcting Codes, 3rd edn. Wiley-Interscience, New York (1982)

    MATH  Google Scholar 

  11. Chamberland, C., Beverland, M.E.: Flag fault-tolerant error correction with arbitrary distance codes. Quantum 2, 53 (2018)

    Article  Google Scholar 

  12. Campbell, E.T.: A theory of single-shot error correction for adversarial noise. Quantum Sci. Technol. 4, 025006 (2019)

    Article  ADS  Google Scholar 

  13. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  15. Dinitz, J.H., Stinson, D.R.: A brief introduction to design theory. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys. Wiley, New York (1992)

    MATH  Google Scholar 

  16. Mathon, R., Rosa, A.: Tables of parameters of BIBDs with \(r \le 41\) including existence, enumeration and resolvability results: an update. North-Holland Math. Stud. 30, 65–96, 12 (1985)

    MATH  Google Scholar 

  17. Chao, R., Reichardt, B.W.: Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Joynt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 534 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premakumar, V.N., Sha, H., Crow, D. et al. 2-designs and redundant syndrome extraction for quantum error correction. Quantum Inf Process 20, 84 (2021). https://doi.org/10.1007/s11128-021-03015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03015-1

Keywords

Navigation