Skip to main content
Log in

Dynamics of field nonclassicality in the Jaynes–Cummings model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Employing an informational quantifier for nonclassicality of bosonic field based on the Wigner–Yanase skew information, we investigate the dynamics of field nonclassicality in the Jaynes–Cummings model evolving from several typical initial atom–field states: coherent states, Fock states, and thermal states for the field, and ground state, excited state, symmetric superposition state, and maximally mixed state for the atom. We reveal some intriguing features of the field dynamics and their sensitivity on the initial states from an informational perspective. The results show that field nonclassicality can be generated in most cases and exhibits complex dynamic patterns involving collapses and revivals. A remarkable observation is that the initial coherent field states, assisted by the atom, can be converted to almost maximally nonclassical field states constrained by the average photon number, even though all coherent states are the most classical and possess the same minimal nonclassicality among pure states. The field dynamics may be exploited to estimate the initial atom as well as the field states, prepare desired evolving states and process quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  2. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  3. Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, London (2003)

    Book  Google Scholar 

  4. Gerry, C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  5. Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Titulaer, U.M., Glauber, R.J.: Correlation functions for coherent fields. Phys. Rev. 140, B676 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  10. Haroche, S.: Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013)

    Article  ADS  Google Scholar 

  11. Wineland, D.J.: Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103 (2013)

    Article  ADS  Google Scholar 

  12. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  13. Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scr. T12, 34 (1986)

    Article  ADS  Google Scholar 

  14. Hillery, M.: Nonclassical distance in quantum optics. Phys. Rev. A 35, 725 (1987)

    Article  ADS  Google Scholar 

  15. Dodonov, V.V., Man’ko, O.V., Man’ko, V.I., Wünsche, A.: Hilbert-Schmidt distance and non-classicality of states in quantum optic. J. Mod. Opt. 47, 633 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Marian, P., Marian, T.A., Scutaru, H.: Quantifying nonclassicality of one-Mode Gaussian states of the radiation field. Phys. Rev. Lett. 88, 153601 (2002)

    Article  ADS  Google Scholar 

  17. Dodonov, V.V., Renó, M.B.: Classicality and anticlassicality measures of pure and mixed quantum states. Phys. Lett. A 308, 249 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Boca, M., Ghiu, I., Marian, P., Marian, T.A.: Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states. Phys. Rev. A 79, 014302 (2009)

    Article  ADS  Google Scholar 

  19. Giraud, O., Braun, P., Braun, D.: Quantifying quantumness and the quest for queens of quantum. New J. Phys. 12, 063005 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Mari, A., Kieling, K., Nielsen, B.M., Polzik, E.S., Eisert, J.: Directly estimating nonclassicality. Phys. Rev. Lett. 106, 010403 (2011)

    Article  ADS  Google Scholar 

  21. Nair, R.: Nonclassical distance in multimode bosonic systems. Phys. Rev. A 95, 063835 (2017)

    Article  ADS  Google Scholar 

  22. Lemos, H.C.F., Almeida, A.C.L., Amaral, B., Oliveira, A.C.: Roughness as classicality indicator of a quantum state. Phys. Lett. A 382, 823 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Gehrke, C., Sperling, J., Vogel, W.: Quantification of nonclassicality. Phys. Rev. A 86, 052118 (2012)

    Article  ADS  Google Scholar 

  24. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)

    Article  ADS  Google Scholar 

  25. Sperling, J., Vogel, W.: Convex ordering and quantification of quantumness. Phys. Scr. 90, 074024 (2015)

    Article  ADS  Google Scholar 

  26. Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lee, C.T.: Moments of P functions and nonclassical depths of quantum states. Phys. Rev. A 45, 6586 (1992)

    Article  ADS  Google Scholar 

  28. Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A 52, 3374 (1995)

    Article  ADS  Google Scholar 

  29. Lütkenhaus, N., Barnett, S.M.: Nonclassical effects in phase space. Phys. Rev. A 51, 3340 (1995)

    Article  ADS  Google Scholar 

  30. Malbouisson, J.M.C., Baseia, B.: On the Measure of nonclassicality of field states. Phys. Scr. 67, 93 (2003)

    Article  ADS  MATH  Google Scholar 

  31. Kenfack, A., Zyczykowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Phys. B 6, 396 (2004)

    MathSciNet  Google Scholar 

  32. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  33. Bose, S.: Wehrl-entropy-based quantification of nonclassicality for single-mode quantum optical states. J. Phys. A 52, 025303 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. De Bièvre, S., Horoshko, D.B., Patera, G., Kolobov, M.I.: Measuring nonclassicality of bosonic field quantum states via operator ordering sensitivity. Phys. Rev. Lett. 122, 080402 (2019)

    Article  Google Scholar 

  35. Luo, S., Zhang, Y.: Quantifying nonclassicality via Wigner-Yanase skew information. Phys. Rev. A 100, 032116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Luo, S., Zhang, Y.: Quantumness of bosonic field states. Inter. J. Theor. Phys. 59, 206 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yadin, B., Binder, F.C., Thompson, J., Narasimhachar, V., Gu, M., Kim, M.S.: Operational resource theory of continuous-variable nonclassicality. Phys. Rev. X 8, 041038 (2018)

    Google Scholar 

  38. Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  39. Wang, X.: Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. De Oliveira, M.C., Munro, W.J.: Nonclassicality and information exchange in deterministic entanglement formation. Phys. Lett. A 320, 352 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ge, W., Tasgin, M.E., Zubairy, M.S.: Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter. Phys. Rev. A 92, 052328 (2015)

    Article  ADS  Google Scholar 

  42. Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)

    Article  ADS  Google Scholar 

  43. Regula, B., Piani, M., Cianciaruso, M., Bromley, T.R., Streltsov, A., Adesso, G.: Converting multilevel nonclassicality into genuine multipartite entanglement. New J. Phys. 20, 033012 (2018)

    Article  ADS  Google Scholar 

  44. Fu, S., Luo, S., Zhang, Y.: Converting nonclassicality to quantum correlations via beamsplitters. Europhys. Lett. 128, 3 (2020)

    Article  Google Scholar 

  45. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. Rivas, Á., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010)

    Article  ADS  Google Scholar 

  47. Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122, 040503 (2019)

    Article  ADS  Google Scholar 

  48. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  49. Stenholm, S.: Quantum theory of electromagnetic fields interacting with atoms and molecules. Phys. Rep. 6, 1 (1973)

    Article  ADS  Google Scholar 

  50. Ackerhalt, J.R., Rza̧żewski, K.: Heisenberg-picture operator perturbation theory. Phys. Rev. A 12, 2549 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  51. Aravind, P.K., Hirschfelder, J.O.: Two-state systems in semiclassical and quantized fields. J. Phys. Chem. 88, 4788 (1984)

    Article  Google Scholar 

  52. Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  53. Shore, B.W., Knight, P.L.: Topical review The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  MATH  Google Scholar 

  54. Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A 23, 236 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  55. Meystre, P., Zubairy, M.S.: Squeezed states in the Jaynes-Cummings model. Phys. Lett. A 89, 390 (1982)

    Article  ADS  Google Scholar 

  56. Knight, P.L., Radmore, P.M.: Quantum origin of dephasing and revivals in the coherent-state Jaynes-Cummings model. Phys. Rev. A 26, 676 (1982)

    Article  ADS  Google Scholar 

  57. Knight, P.L.: Quantum fluctuations and squeezing in the interaction of an atom with a single field mode. Phys. Scripta T12, 51 (1986)

    Article  ADS  Google Scholar 

  58. Puri, R.R., Agarwal, G.S.: Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping. Phys. Rev. A 33, 3610(R) (1986)

    Article  ADS  Google Scholar 

  59. Rempe, G., Walther, H., Klein, W.: Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353 (1987)

    Article  ADS  Google Scholar 

  60. Kuklinski, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes-Cummings model. Phys. Rev. A 37, 3175 (1988)

    Article  ADS  Google Scholar 

  61. Filipowicz, P., Javanainen, J., Meystre, P.: Quantum and semiclassical steady states of a kicked cavity mode. J. Opt. Soc. Am. B 3, 906 (1986)

    Article  ADS  Google Scholar 

  62. Krause, J., Scully, M.O., Walther, T., Walther, H.: Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser. Phys. Rev. A 39, 1915 (1989)

    Article  ADS  Google Scholar 

  63. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65, 3385 (1990)

    Article  ADS  Google Scholar 

  64. Gea-Banacloche, J.: Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields. Phys. Rev. A 44, 5913 (1991)

    Article  ADS  Google Scholar 

  65. Bužek, V., Moya-Cessa, H., Knight, P.L., Phoenix, S.J.D.: Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution. Phys. Rev. A 45, 8190 (1992)

    Article  ADS  Google Scholar 

  66. Averbukh, I.Sh.: Fractional revivals in the Jaynes-Cummings model. Phys. Rev. A 46, R2205 (1992)

  67. Fleischhauer, M., Schleich, W.P.: Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes-Cummings model. Phys. Rev. A 47, 4258 (1993)

    Article  ADS  Google Scholar 

  68. Cirac, J.I., Blatt, R., Parkins, A.S., Zoller, P.: Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 49, 1202 (1994)

    Article  ADS  Google Scholar 

  69. Casanova, J., Romero, G., Lizuain, I., García-Ripoll, J.J., Solano, E.: Deep strong coupling regime of the Jaynes-Cummings model. Phys. Rev. Lett. 105, 263603 (2010)

    Article  ADS  Google Scholar 

  70. Kukliński, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes-Cummings model. Phys. Rev. A 37, 3175(R) (1988)

    Article  ADS  Google Scholar 

  71. Phoenix, S.J.D., Knight, P.L.: Fluctuations and entropy in models of quantum optical resonance, Ann. Phys, (N.Y.) 186, 381 (1988)

  72. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  73. Aliskenderov, E.I., Dung, H.T., Knöll, L.: Effects of atomic coherences in the Jaynes-Cummings model: Photon statistics and entropy. Phys. Rev. A 48, 1604 (1993)

    Article  ADS  Google Scholar 

  74. Orlowski, A., Paul, H., Kastelewicz, G.: Dynamical properties of a classical-like entropy in the Jaynes-Cummings model. Phys. Rev. A 52, 1621 (1995)

    Article  ADS  Google Scholar 

  75. Furuichi, S., Ohya, M.: Quantum mutual entropy for Jaynes-Cummings model. Rep. Math. Phys. 44, 81 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Li, F.-l., Gao, S.-y.: Controlling nonclassical properties of the Jaynes-Cummings model by an external coherent field, Phys. Rev. A 62, 043809 (2000)

  77. Bose, S., Fuentes-Guridi, I., Knight, P.L., Vedral, V.: Subsystem purity as an enforcer of entanglement. Phys. Rev. Lett. 87, 050401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  78. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  79. Obada, A.S.F., Hessian, H.A.: Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model. J. Opt. Soc. Am. B 21, 1535 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  80. Boukobza, E., Tannor, D.J.: Entropy exchange and entanglement in the Jaynes-Cummings model. Phys. Rev. A 71, 063821 (2005)

    Article  ADS  Google Scholar 

  81. Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805 (2005)

    Article  ADS  Google Scholar 

  82. Zhang, J., Wang, J., Zhang, T.: Entanglement and nonclassicality evolution of the atom in a squeezed vacuum. Opt. Commun. 277, 353 (2007)

    Article  ADS  Google Scholar 

  83. Wigner, E.P., Yanase, M.M.: Information content of distributions. Proc. Nat. Acad. Sci. U.S.A. 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  85. Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    Article  ADS  Google Scholar 

  86. Luo, S.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005)

    Article  MATH  Google Scholar 

  87. Luo, S., Sun, Y.: Quantum coherence versus quantum uncertainty. Phys. Rev. A 96, 022130 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  88. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018)

    Article  ADS  Google Scholar 

  89. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  90. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  91. Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016)

    Article  ADS  Google Scholar 

  92. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-19-012A3), the National Key R & D Program of China (Grant No. 2020YFA0712700) and the National Natural Science Foundation of China (Grant Nos. 11875317 and 61833010).

Appendix

Appendix

For the purpose of completeness and convenience of evaluating the field nonclassicality, we first prove Eq. (8) and then derive the standard results concerning the reduced field states of the Jaynes–Cummings model evolving from several typical initial atom–field states.

To establish Eq.(8), noting that \([H_a\otimes \mathbf{1}, \mathbf{1}\otimes H_f]=0,\) and

$$\begin{aligned} {[}\sigma _z\otimes \mathbf{1},\ H_I]= & {} \lambda (\sigma _z \sigma _+ - \sigma _+\sigma _z)\otimes a + \lambda (\sigma _z\sigma _--\sigma _-\sigma _z)\otimes a^\dag \\= & {} 2\lambda (\sigma _+\otimes a-\sigma _-\otimes a^\dag ),\\ {[}{} \mathbf{1}\otimes a^\dag a,\ H_I]= & {} \lambda \sigma _+ \otimes (a^\dag a^2-aa^\dag a) +\lambda \sigma _-\otimes (a^\dag aa^\dag -a^{\dag 2}a)\\= & {} \lambda (\sigma _-\otimes a^\dag -\sigma _+\otimes a). \end{aligned}$$

Therefore, if \(\mu =\omega ,\) noting that \(H_a=\omega \sigma _z/2\) and \(H_f=\mu a^\dagger a,\) we have

$$\begin{aligned} {[}H_a\otimes \mathbf{1}+\mathbf{1}\otimes H_f, \ H_I]=0, \end{aligned}$$

from which we obtain

$$\begin{aligned} e^{-itH}= & {} e^{-it(H_a\otimes \mathbf{1}+\mathbf{1}\otimes H_f)}e^{-itH_I}=(e^{-itH_a}\otimes \mathbf{1})(\mathbf{1}\otimes e^{-itH_f})e^{-itH_I}. \end{aligned}$$

Consequently,

$$\begin{aligned}&\mathrm{tr}_a \big (e^{-itH}(\rho _a\otimes \rho _f) e^{itH}\big )\\&\quad =\mathrm{tr}_a \big ((e^{-itH_a}\otimes \mathbf{1})(\mathbf{1}\otimes e^{-itH_f})e^{-itH_I}(\rho _a\otimes \rho _f) e^{itH_I}(\mathbf{1}\otimes e^{itH_f})(e^{itH_a}\otimes \mathbf{1})\big )\\&\quad =e^{-itH_f} \mathrm{tr}_a\big (e^{-itH_I}(\rho _a\otimes \rho _f) e^{itH_I}\big )e^{itH_f}. \end{aligned}$$

By the phase-space rotation invariance of \(N(\cdot )\) in Eq. (6), we obtain

$$\begin{aligned} N\Big (\mathrm{tr}_a \big (e^{-itH}(\rho _a\otimes \rho _f) e^{itH}\big )\Big )= & {} N\Big (\mathrm{tr}_a\big ( e^{-itH_I}(\rho _a\otimes \rho _f) e^{itH_I}\big )\Big ), \end{aligned}$$

which is the desired result.

Next, we derive reduced field states in the Jaynes–Cummings model. If the atom–field is initially in a pure product state \(|\psi _a \rangle |\psi _f \rangle \) with the initial atomic state

$$\begin{aligned} |\psi _a\rangle =\sqrt{p}|e\rangle +\sqrt{1-p} |g\rangle , \qquad 0\le p\le 1 \end{aligned}$$

and the initial field

$$|\psi _f \rangle =\sum _{n=0}^\infty q_{n}|n\rangle ,$$

then the atom–field state at time t is

$$\begin{aligned} |\Psi (t)\rangle= & {} e^{-itH_I}(|\psi _a\rangle |\psi _f \rangle )\\= & {} \sum _{n=0}^\infty \big (a_{n}(t)|g\rangle |n\rangle +b_{n}(t)|e\rangle |n\rangle \big ) \end{aligned}$$

with

$$\begin{aligned} a_{n}(t)= & {} \sqrt{1-p}q_{n}\cos (\lambda t \sqrt{n})-i\sqrt{p}q_{n-1}\sin (\lambda t \sqrt{n}),\\ b_{n}(t)= & {} \sqrt{p}q_{n}\cos (\lambda t\sqrt{n+1})-i\sqrt{1-p}q_{n+1}\sin (\lambda t \sqrt{n+1}). \end{aligned}$$

The reduced field state can be expressed as

$$\begin{aligned} \rho _f (t)= & {} \mathrm{tr}_a |\Psi (t)\rangle \langle \Psi (t)|\\= & {} \sum _{m,n=0}^\infty \big (a_{n}(t)a_{m}^{*}(t)+b_{n}(t)b_{m}^{*}(t)\big )|n\rangle \langle m|. \end{aligned}$$

For the mixed initial atomic state

$$\begin{aligned} \rho _a=p_\mathrm{e}|e\rangle \langle e|+(1-p_\mathrm{e})|g\rangle \langle g|,\qquad 0\le p_\mathrm{e}\le 1 \end{aligned}$$

and mixed initial field state

$$\begin{aligned} \rho _f =\sum _{n=0}^\infty p_n|n\rangle \langle n|, \end{aligned}$$

the evolved state can be obtained by linear combinations and the reduced field state can be expressed as

$$\begin{aligned} \rho _f (t)= & {} \mathrm{tr}_\mathrm{a} \left( e^{-itH_I}(\rho _a\otimes \rho _f) e^{itH_I}\right) \\= & {} \sum _{n=0}^\infty c_n(t)|n\rangle \langle n|. \end{aligned}$$

which is a Fock-diagonal state with the coefficients

$$\begin{aligned} c_n(t)= & {} p_\mathrm{e}\left( p_n\mathrm{cos}^2(\lambda t\sqrt{n+1})+p_{n-1}\mathrm{sin}^2(\lambda t\sqrt{n}) \right) \\+ & {} (1-p_\mathrm{e})\left( p_n\mathrm{cos}^2(\lambda t\sqrt{n})+p_{n+1}\mathrm{sin}^2(\lambda t\sqrt{n+1}) \right) . \end{aligned}$$

In the following, we present the explicit expressions of \(a_n(t),b_n(t)\) and \(c_n(t)\) when the initial field states \(\rho _f\) are the coherent states \(|\alpha \rangle \), the Fock states \(|n\rangle \) and the thermal states

$$\begin{aligned} \rho _{\bar{n}}=\frac{1}{1+\bar{n}} \sum _{n=0}^\infty \Big (\frac{\bar{n}}{1+\bar{n}}\Big )^{n}|n\rangle \langle n| \end{aligned}$$

with \(\bar{n}\) being the average photon numbers.

A. Field initially in coherent states

Let the field be initially in the coherent state

$$\begin{aligned} |\psi _f \rangle =|\alpha \rangle =e^{-\frac{|\alpha |^{2}}{2}} \sum _{n=0}^\infty \frac{\alpha ^{n}}{\sqrt{n!}}|n\rangle , \end{aligned}$$

with the average photon number \(\bar{n}=|\alpha |^{2}. \) For the initial state of the atom, we consider two cases:

(1) If the atom is initially in the superposition state \(|\psi _a\rangle =\sqrt{p}|e\rangle +\sqrt{1-p} |g\rangle ,\) then the initial atom–field state is \(|\psi _a \rangle \otimes |\alpha \rangle ,\) and the reduced field state at time t can be obtained as

$$\begin{aligned} \rho _f (t)=\sum _{m,n=0}^\infty \big (a_{n}(t)a_{m}^{*}(t)+b_{n}(t)b_{m}^{*}(t)\big )|n\rangle \langle m| \end{aligned}$$

with

$$\begin{aligned} a_{n}(t)= & {} \sqrt{1-p}e^{-\frac{|\alpha |^{2}}{2}}\frac{\alpha ^{n}}{\sqrt{n!}}\cos (\lambda t\sqrt{n})\\&-i\sqrt{p}e^{-\frac{|\alpha |^{2}}{2}}\frac{\alpha ^{n-1}}{\sqrt{(n-1)!}}\sin (\lambda t \sqrt{n}),\\ b_{n}(t)= & {} \sqrt{p}e^{-\frac{|\alpha |^{2}}{2}}\frac{\alpha ^{n}}{\sqrt{n!}}\cos (\lambda t\sqrt{n+1})\\&-i\sqrt{1-p}e^{-\frac{|\alpha |^{2}}{2}}\frac{\alpha ^{n+1}}{\sqrt{(n+1)!}}\sin (\lambda t\sqrt{n+1}). \end{aligned}$$

(2) If the atom is initially in the mixed state \(\rho _a=p_\mathrm{e}|e\rangle \langle e|+(1-p_\mathrm{e})|g\rangle \langle g|,\) then the initial atom–field state is \( \rho _a \otimes |\alpha \rangle \langle \alpha |,\) and the reduced field state at time t can be obtained from linear combinations as

$$\begin{aligned} \rho _f (t)= & {} e^{-|\alpha |^2}\sum _{m,n=0}^\infty \left( \frac{p_e\alpha ^{n-1}\alpha ^{*m-1}\sin (\lambda t\sqrt{n})\sin (\lambda t\sqrt{m})}{\sqrt{(n-1)!(m-1)!}}\right. \\+ & {} \frac{(1-p_e)\alpha ^{n+1}\alpha ^{*m+1}\sin (\lambda t\sqrt{n+1})\sin (\lambda t\sqrt{m+1})}{\sqrt{(n+1)!(m+1)!}}\\+ & {} \frac{p_e\alpha ^{n}\alpha ^{*m}\cos (\lambda t\sqrt{n+1})\cos (\lambda t\sqrt{m+1})}{\sqrt{n!m!}}\\+ & {} \left. \frac{(1-p_e)\alpha ^{n}\alpha ^{*m}\cos (\lambda t\sqrt{n})\cos (\lambda t\sqrt{m})}{\sqrt{n!m!}}\right) |n\rangle \langle m|. \end{aligned}$$

B. Field initially in Fock states

Next we consider the case when the field is initially in a Fock state \(|\psi _f \rangle =|n\rangle .\) For the initial atomic state, we consider two cases:

(1) If the atom is initially in the superposition state \(|\psi _a\rangle =\sqrt{p}|e\rangle +\sqrt{1-p} |g\rangle ,\) then the initial atom–field state is \(|\psi _a\rangle \otimes |n\rangle ,\) and the reduced field state at time t is

$$\begin{aligned} \rho _f(t)= & {} \left( (1-p)\cos ^2(\lambda t\sqrt{n})+p\cos ^2(\lambda t\sqrt{n+1})\right) |n\rangle \langle n|\\&+p\sin ^2(\lambda t\sqrt{n+1})|n+1\rangle \langle n+1|\\&+(1-p)\sin ^2(\lambda t\sqrt{n})|n-1\rangle \langle n-1|\\&+i\sqrt{p(1-p)}\sin (\lambda t\sqrt{n+1})\cos (\lambda t\sqrt{n})|n\rangle \langle n+1|\\&-i\sqrt{p(1-p)}\sin (\lambda t\sqrt{n+1})\cos (\lambda t\sqrt{n})|n+1\rangle \langle n|\\&+i\sqrt{p(1-p)}\cos (\lambda t\sqrt{n+1})\sin (\lambda t\sqrt{n})|n\rangle \langle n-1|\\&-i\sqrt{p(1-p)}\cos (\lambda t\sqrt{n+1})\sin (\lambda t\sqrt{n})|n-1\rangle \langle n|. \end{aligned}$$

(2) If the atom is initially in a mixed state \(\rho _a=p_\mathrm{e}|e\rangle \langle e|+(1-p_\mathrm{e})|g\rangle \langle g|,\) then the initial atom–field state is \(\rho _a \otimes |n\rangle \langle n| ,\) and the reduced field state at time t is

$$\begin{aligned} \rho _f (t)= & {} (1-p_\mathrm{e})\mathrm{sin}^2(\lambda t\sqrt{n})|n-1\rangle \langle n-1|\\+ & {} p_\mathrm{e}\mathrm{sin}^2(\lambda t\sqrt{n+1}) |n+1\rangle \langle n+1|\\+ & {} \left( p_\mathrm{e}\mathrm{cos}^2(\lambda t \sqrt{n+1})+(1-p_\mathrm{e})\mathrm{cos}^2 (\lambda t\sqrt{n})\right) |n\rangle \langle n|. \end{aligned}$$

C. Field initially in thermal states

Finally we consider the case when the field is initially in the thermal state

$$ \rho _f =\rho _{\bar{n}}=\sum _{n=0}^\infty \frac{1}{1+\bar{n}}(\frac{\bar{n}}{1+\bar{n}})^{n}|n\rangle \langle n|.$$

For the initial atomic state, we also consider two cases:

(1) If the atom is initially in the pure state \(|\psi _a\rangle =p|e\rangle +\sqrt{1-p^2} |g\rangle ,\) then the initial atom–field state is \(|\psi _a\rangle \langle \psi _a|\otimes \rho _{\bar{n}},\) and by linear combination, the reduced field state at time t is

$$\begin{aligned} \rho _f (t)= & {} \sum _{n=0}^\infty \frac{1}{1+\bar{n}}(\frac{\bar{n}}{1+\bar{n}})^{n} \left[ \left( (1-p)\cos ^2(\lambda t\sqrt{n})\right. \right. \\&+\left. p\cos ^2(\lambda t\sqrt{n+1})\right) |n\rangle \langle n|\\&+p\sin ^2(\lambda t\sqrt{n+1})|n+1\rangle \langle n+1|\\&+(1-p)\sin ^2(\lambda t\sqrt{n})|n-1\rangle \langle n-1|\\&+i\sqrt{p(1-p)}\sin (\lambda t\sqrt{n+1})\cos (\lambda t\sqrt{n})|n\rangle \langle n+1|\\&-i\sqrt{p(1-p)}\sin (\lambda t\sqrt{n+1}) \cos (\lambda t\sqrt{n})|n+1\rangle \langle n|\\&+i\sqrt{p(1-p)}\cos (\lambda t\sqrt{n+1}) \sin (\lambda t\sqrt{n})|n\rangle \langle n-1|\\&-\left. ip\sqrt{1-p^2}\cos (\lambda t\sqrt{n+1}) \sin (\lambda t\sqrt{n})|n-1\rangle \langle n|\right] . \end{aligned}$$

(2) If the atom is initially in the mixed state \(\rho _a=p_\mathrm{e}|e\rangle \langle e|+(1-p_\mathrm{e})|g\rangle \langle g|,\) then the initial atom–field state is \(\rho _a \otimes \rho _{\bar{n}},\) and the reduced field state at time t is

$$\rho _f (t)=\sum _{n=0}^{\infty }c_n(t)|n\rangle \langle n|$$

with

$$\begin{aligned} c_n(t)= & {} \frac{{\bar{n}}^n}{(\bar{n}+1)^{n+1}}(p_\mathrm{e}u_n(t)+(1-p_\mathrm{e})v_n(t)) \end{aligned}$$

where

$$\begin{aligned} u_n(t)= & {} \mathrm{cos}^2(\lambda t\sqrt{n+1})+\frac{\bar{n}+1}{\bar{n}}\mathrm{sin}^2(\lambda t\sqrt{n}), \\ v_n(t)= & {} \mathrm{cos}^2(\lambda t\sqrt{n})+\frac{\bar{n}}{\bar{n}+1}\mathrm{sin}^2(\lambda t\sqrt{n+1}). \end{aligned}$$

D. Field initially in vacuum states

This is actually included in the above cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Luo, S. & Zhang, Y. Dynamics of field nonclassicality in the Jaynes–Cummings model. Quantum Inf Process 20, 88 (2021). https://doi.org/10.1007/s11128-020-02963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02963-4

Keywords

Navigation