Skip to main content
Log in

Investigation on effects of system parameters on transmission depth in underwater wireless optical communication

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Performance of underwater wireless optical communication (UWOC) with different vertical water channel conditions is experimentally analyzed. Experiment has been carried out by varying temperature and salinity of the vertical water channel. Underwater vertical channel is modeled by obtaining the best fit with the experimental data in terms of received optical power as a function of transmission depth and attenuation. This mathematical model is used to simulate UWOC system in Optisystem software to analyze the performance of UWOC in terms of Q factor and BER. Analysis has been carried out to obtain maximum reachable transmission depth at different data rates for fixed input power and maximum achievable data rate at different input power for fixed transmission depth. Maximum reachable transmission depth is also analyzed for different modulation index of the amplitude modulator. These analyses are carried out for optimal performance parameters such as Q factor (≥ 6) and BER (≤ 10–9). Apart from Q factor and BER, performance of the UWOC channel is analyzed through eye diagrams obtained at the receiver of the UWOC system in terms of eye height which reflects the quality of signal. This analysis will be helpful for power budgeting, data rate restriction with transmission depth in different water channel conditions to establish vertical UWOC link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19(1), 204–238 (2017)

    Article  Google Scholar 

  2. Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Google Scholar 

  3. Alipour, A., Mir, A.: On the performance of blue–green waves propagation through underwater optical wireless communication system. Photon Netw. Commun. 36(3), 309–315 (2018)

    Article  Google Scholar 

  4. Arvanitakis, G., McKendry, J., Bookey, H.T., Gu, E. and Dawson, M.D.: Light emitting diodes and lasers for high-speed underwater optical communications. Undersea Defence Technology (2018)

  5. Al-Halafi, A., Oubei, H.M., Ooi, B.S., Shihada, B.: Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode. IEEE/OSA J. Opt. Commun. Netw. 9(10), 826–832 (2017)

    Article  Google Scholar 

  6. Fu, Y., Du, Y.: Performance of heterodyne differential phase-shift-keying underwater wireless optical communication systems in gamma-gamma-distributed turbulence. Appl. Opt. 57(9), 2057–2063 (2018)

    Article  Google Scholar 

  7. Huang, X., Zhang, J.A., Liu, R.P., Guo, Y.J., Hanzo, L.: Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh. Technol. Mag. 14(3), 84–91 (2019)

    Article  Google Scholar 

  8. Pinna, S., Zhao, H., Brunelli, S.Š., Song, B., Sang, F. and Klamkin, J.: High-power integrated indium phosphide transmitter for free-space optical communications. In Proc. of Asia Communications and Photonics Conference, Chengdu, pp. S3E-5 (2019)

  9. Malik, S., Sahu, P.K.: Free space optics/millimeter-wave based vertical and horizontal terrestrial backhaul network for 5G. Opt. Commun. 459, 125010 (2020)

    Article  Google Scholar 

  10. Soni, G.G., Tripathi, A., Mandloi, A., Gupta, S.: Compensating rain induced impairments in terrestrial FSO links using aperture averaging and receiver diversity. Opt. Quant. Electron. 51(7), 244 (2019)

    Article  Google Scholar 

  11. Nistazakis, H.E., Tsiftsis, T.A., Tombras, G.S.: Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Commun. 3(8), 1402–1409 (2009)

    Article  Google Scholar 

  12. Nema, S., Oza, S., Parmar, A., Shah, D. and Singh, S.: Implementation of wavelength diversity technique in free-space optical link. In: Proc. of International Conference on Innovations in Electronics and Communication Engineering, Hyderabad, pp. 241–251 (2019)

  13. Iyer, S., Singh, S.P.: Spectral and power efficiency investigation in single-and multi-line-rate optical wavelength division multiplexed (WDM) networks. Photon Netw. Commun. 33(1), 39–51 (2017)

    Article  Google Scholar 

  14. Iyer, S. and Singh, S.P.: Investigation of launch power and regenerator placement effect on the design of mixed-line-rate (MLR) optical WDM networks. Photonic Netw. Commun., pp.1–17 (2017)

  15. Singh, S.P., Iyer, S., Kar, S., Jain, V.K.: Study on mitigation of transmission impairments and issues and challenges with PLIA-RWA in optical WDM networks. J. Opt. Commun. 33(2), 83–101 (2012)

    Article  Google Scholar 

  16. Jamali, M.V. and Salehi, J.A.: On the BER of multiple-input multiple-output underwater wireless optical communication systems. In: Proc. of 4th International Workshop on Optical Wireless Communications (IWOW), Istanbul, pp. 26–30 (2015)

  17. Jamali, M.V., Salehi, J.A., Akhoundi, F.: Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme. IEEE Trans. Commun. 65(3), 1176–1192 (2017)

    Article  Google Scholar 

  18. Zhang, H., Dong, Y.: Impulse response modeling for general underwater wireless optical MIMO links. IEEE Commun. Mag. 54(2), 56–61 (2016)

    Article  Google Scholar 

  19. Jamali, M.V., Akhoundi, F., Salehi, J.A.: Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel. IEEE Trans. Wireless Commun. 15(6), 4104–4116 (2016)

    Article  Google Scholar 

  20. Jamali, M.V., Chizari, A., Salehi, J.A.: Performance analysis of multi-hop underwater wireless optical communication systems. IEEE Photonics Technol. Lett. 29(5), 462–465 (2017)

    Article  Google Scholar 

  21. Celik, A., Saeed, N., Al-Naffouri, T.Y. and Alouini, M.S., 2018, April. Modeling and performance analysis of multihop underwater optical wireless sensor networks. In 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6). IEEE

  22. Zhang, H., Cheng, J., Wang, Z. and Dong, Y., 2018, On the capacity of buoy-based mimo systems for underwater optical wireless links with turbulence. In: 2018 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE

  23. Cossu, G., Sturniolo, A., Messa, A., Scaradozzi, D., Ciaramella, E.: Full-fledged 10Base-T ethernet underwater optical wireless communication system. IEEE J. Sel. Areas Commun. 36(1), 194–202 (2018)

    Article  Google Scholar 

  24. Vedachalam, N., Ramesh, S., Prasanth, P.U., Ramdass, G.A.: Modeling of rising methane bubbles during production leaks from the gas hydrate sites of India. Mar. Georesour. Geotechnol. 36(8), 966–973 (2018)

    Article  Google Scholar 

  25. Liu, C., Liang, X., Ponte, R.M., Vinogradova, N., Wang, O.: Vertical redistribution of salt and layered changes in global ocean salinity. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  26. Kumar, S., Prince, S., Aravind, J.V., Kumar G. S.: Analysis on the effect of salinity in underwater wireless optical communication. Mar. Georesour. Geotechnol., pp.1–11 (2019)

  27. https://www.edmundoptics.com/p/450nm-30mw-h3-blue-laser-diode-module/3333/

  28. https://www.edmundoptics.com/p/0420-108mum-300mw-silicon-power-detector/31862/

  29. https://www.edmundoptics.com/p/eo-premier-powerenergy-meter/31858/

  30. Talley, L.D.: Salinity patterns. In: MacCracken, M.C., Perry, J.S. (eds.) Encyclopedia of Global Environmental Change, pp. 629–640. John Wiley and Sons, Chichester (2002)

    Google Scholar 

  31. Wang, J., Lu, C., Li, S., Xu, Z.: 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express 27(9), 12171–12181 (2019)

    Article  Google Scholar 

  32. Nguyen, H., Bui, X.N.: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest. Nat. Resour. Res. 28(3), 893–907 (2019)

    Article  MathSciNet  Google Scholar 

  33. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with Matlab. CRC Press, Florida (2019)

    Book  Google Scholar 

  34. http://www.deepsea.com/knowledgebase/technical-resources/diode-lasers-in underwater-applications. Accessed 10 March 2020

  35. Sumathi, K., Balasaraswathi, M., Boopathi, C.S., Singh, M., Malhotra, J. and Dhasarathan, V.: Design of 3.84 Tbps hybrid WDM–PDM based inter-satellite optical wireless communication (IsOWC) system using spectral efficient orthogonal modulation scheme. J. Ambient Intell. Humanized Comput., pp.1–9 (2020)

  36. Li, C.Y., Lu, H.H., Chen, Y.N., Su, C.W., Wu, Y.R., Wang, Z.H., Lin, Y.P.: A high-speed and long-reach PAM4 optical wireless communication system. IEEE Photonics J. 10(4), 1–9 (2018)

    Google Scholar 

  37. Wu, D., Ghassemlooy, Z., LeMinh, H., Rajbhandari, S. and Kavian, Y.S.: Power distribution and q-factor analysis of diffuse cellular indoor visible light communication systems. In: Proc. of 16th European Conference on Networks and Optical Communications, UK, pp. 28–31 (2011)

  38. Chaudhary, S., Tang, X., Sharma, A., Lin, B., Wei, X., Parmar, A.: A cost-effective 100 Gbps SAC-OCDMA–PDM based inter-satellite communication link. Opt. Quant. Electron. 51(5), 148 (2019)

    Article  Google Scholar 

  39. Lian, J., Gao, Y., Wu, P., Lian, D.: Orthogonal frequency division multiplexing techniques comparison for underwater optical wireless communication systems. Sensors 19(1), 1–19 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Naval Research Board (NRB) (Grant No. NRB/4003/PG/378), Defence Research Development organization (DRDO), Government of India, for funding this research work. The authors also thank SRM IST for the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthi Prince.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Prince, S. & Kumar, G.S. Investigation on effects of system parameters on transmission depth in underwater wireless optical communication. Photon Netw Commun 41, 163–176 (2021). https://doi.org/10.1007/s11107-021-00924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00924-0

Keywords

Navigation