Skip to main content
Log in

Variability of Sedimentation Processes in Northern Part of East Novaya Zemlya Trough in the Anthropocene

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The lithological and mineralogical characteristics of sea surface sediments, composition of microfossils, contribution of organic matter, and element composition have been studied in a core from the northern part of East Novaya Zemlya Trough. Sedimentation rates were calculated based on the radioisotopes 210Pb and 137Cs. Lithological, biogeochemical, and geochemical studies showed a low variability of the sedimentation conditions over the last 250 years. However, even small changes in microfossils, as well as lithological and geochemical parameters, make it possible to trace some short-term climate changes in this area, probably controlled by atmospheric circulation. The core shows a clear binomial structure, reflecting changes in sedimentation at the end of the Little Ice Age (LIA) and afterward. For the northern part of the East Novaya Zemlya Trough, low sea surface temperatures and an increase in the duration of ice cover at the end of the LIA in the 1780s−1810s have been reconstructed. Since the 1810s, the hydrodynamic activity of water masses intensified sharply due to glacier melting (especially after the 1840s). In addition, an increase in sea surface temperatures can be assumed, except for the cooling of the 1910s. Later, circulation of water masses increased, contributing to the supply of terrigenous material to the deep parts of the trough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. I. Alekseevskii, D. V. Magritskii, and V. N. Mikhailov, “anthropogenic and natural changes of hydrological limits for nature management in the river deltas of Russian Arctic,” Vodn. Khoz. Ross., No. 1, 14–31 (2015).

  2. E. E. Asadulin and A. Yu. Miroshnikov, “Distribution of heterogenic terrigenous bottom sediments in the western part of the Kara Sea according geochemical parameters,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 98–105 (2016).

  3. G. N. Baturin, “Variations in the composition of the ferromanganese concretions of the Kara Sea,” Oceanology (Engl. Transl.) 51, 148–156 (2011).

  4. G. N. Baturin, “Geochemistry of ferromanganese nodules in the Gulf of Finland, Baltic Sea,” Lithol. Miner. Resour. 44, 411–426 (2009).

    Article  Google Scholar 

  5. N. A. Belyaev, V. I. Peresypkin, and M. S. Ponyaev, “The organic carbon in the water, the particulate matter, and the upper layer of the bottom sediments of the west Kara Sea,” Oceanology (Engl. Transl.) 50, 706–715 (2010).

  6. N. A. Belyaev, M. S. Ponyaev, and A. M. Kiriutin, “Organic carbon in water, particulate matter, and upper layer of bottom sediments of the central part of the Kara Sea,” Oceanology (Engl. Transl.) 55, 508–520 (2015).

  7. A. B. Demidov, S. V. Sheberstov, V. I. Gagarin, and P. V. Khlebopashev, “Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea,” Oceanology (Engl. Transl.) 57, 91–104 (2017).

  8. A. V. Dubinin, Geochemistry of Rare Earth Elements in the Ocean (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  9. V. G. Zakharov, “Peculiarities of glaciers fluctuations of the Atlantic Arctic (end of 19th–beginning 21st centuries),” Slozhnye Sist., No. 4 (13), 33–45 (2014).

  10. A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).

  11. A. G. Zatsepin, E. G. Morozov, V. T. Paka, et al., “Circulation in the southwestern part of the Kara Sea in September 2007,” Oceanology (Engl. Transl.) 50, 643–656 (2010).

  12. A. G. Zatsepin, V. V. Kremenetskiy, A. A. Kubryakov, et al., “Propagation and transformation of waters of the surface desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 55, 450–460 (2015).

  13. V. S. Koryakov, Arctic Glaciers (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  14. V. S. Koryakov, “Glaciers of the Novaya Zemlya Archipelago in 20th century and global warming,” Priroda (Moscow), No. 1, 42–48 (2013).

  15. M. A. Levitan and Yu. A. Lavrushin, Sedimentation History in the Arctic Ocean and Subarctic Seas for the Last 130 Kyr (Springer-Verlag, New York, 2009; GEOS, Moscow, 2007).

  16. M. A. Levitan, T. A. Khusid, V. M. Kuptsov, N. V. Politova, et al., “Types of sections of Upper Quaternary deposits in the Kara Sea,” Okeanologiya (Moscow) 34, 776–788 (1994).

    Google Scholar 

  17. A. P. Lisitzin, “The marginal filter of the ocean,” Oceanology (Engl. Transl.) 34, 671–682 (1994).

  18. A. P. Lisitsyn, Sedimentation in the Oceans (Quantitative Distribution of Sedimentary Matter) (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  19. P. N. Makkaveev, Z. G. Melnikova, A. A. Polukhin, et al., “Hydrochemical characteristics of the waters in the western part of the Kara Sea,” Oceanology (Engl. Transl.) 55, 485–496 (2015).

  20. V. N. Moretskii, “Distribution and dynamics of desalinated waters in the Kara Sea,” Tr. Arkt. Antarkt. Nauchno-Issled. Inst. 389, 33–35 (1985).

    Google Scholar 

  21. E. A. Novichkova and E. I. Polyakova, “Hydrological changes in the White Sea during the historical period inferred from analysis of dinocysts,” Dokl. Earth Sci. 423, 1290–1293 (2008).

    Article  Google Scholar 

  22. A. A. Polukhin and P. N. Makkaveev, “Features of the continental runoff distribution over the Kara Sea,” Oceanology (Engl. Transl.) 57, 19–30 (2017).

  23. E. I. Polyakova, Arctic Seas of Eurasia in Late Cainozoe (Nauchnyi Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  24. A. G. Rozanov, “Redox system of the bottom sediments of the western Kara Sea,” Geochem. Int. 53, 987–1001 (2015).

    Article  Google Scholar 

  25. V. Yu. Rusakov, A. P. Borisov, and G. Yu. Solovieva, “Sedimentation rates in different facies–genetic types of bottom sediments in the Kara Sea: evidence from the 210Pb and 137Cs radionuclides,” Geochem. Int. 57, 1185–1200 (2019).

    Article  Google Scholar 

  26. V. Yu. Rusakov, T. G. Kuzmina, M. A. Levitan, et al., “Heavy metal distribution in the surface layer of bottom sediments of the Kara Sea,” Geochem. Int. 55, 1079–1089 (2017).

    Article  Google Scholar 

  27. V. P. Rusanov and A. N. Vasil’ev, “Distribution of river waters in the Kara Sea according to hydrochemical analysis,” Tr. Arkt. Antarkt. Nauchno-Issled. Inst. 323, 188–196 (1976).

    Google Scholar 

  28. K. V. Syromyatnikov, M. A. Levitan, T. G. Kuzmina, et al., “Geochemistry of sediments of the Holocene transgressive sequences of the Kara Sea,” Geochem. Int. 55, 503–520 (2017).

    Article  Google Scholar 

  29. M. V. Flint and S. G. Poyarkov, “Comprehensive research on the Kara Sea ecosystem (128th cruise of research vessel Professor Shtokman),” Oceanology (Engl. Transl.) 55, 657–659 (2015).

  30. A. Aarkrog, “Input of anthropogenic radionuclides into the World Ocean,” Deep Sea Res., Part II 50, 2597–2606 (2003).

    Article  Google Scholar 

  31. A. Aarkrog, “Radioactivity in Polar regions—Main sources,” J. Environ. Radioact. 25, 21–35 (1994).

    Article  Google Scholar 

  32. R. A. Aliev, V. A. Bobrov, S. N. Kalmykov, et al., “Natural and artificial radionuclides as a tool for sedimentation studies in the Arctic region,” J. Radioanal. Nucl. Chem. 274, 315–321 (2007).

    Article  Google Scholar 

  33. L. W. Cooper and J. M. Grebmeier, “Deposition patterns on the Chukchi shelf using radionuclide inventories in relation to surface sediment characteristics,” Deep Sea Res., Part II 152, 48–66 (2018).

    Article  Google Scholar 

  34. T. J. Crowly, “Causes of climate change over the past 1000 years,” Science 289 (5477), 270–277 (2000).

    Article  Google Scholar 

  35. S. Dahle, V. Savinov, J. Carroll, et al., “A return to the nuclear waste dumping sites in the bays of Novaya Zemlya,” Radioprotection 44, 281–284 (2009).

    Article  Google Scholar 

  36. A. de Vernal, T. Radi, S. Zaragosi, et al., “Distribution of common modern dinoflagellate cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental parameters: the new n = 1968 database,” Mar. Micropaleontol., (in press).

  37. H. L. Filipsson, G. Bjorka, R. Harland, et al., “A major change in the phytoplankton of a Swedish sill fjord—A consequence of engineering work?” Estuarine, Coastal Shelf Sci. 63 (4), 551–560 (2005).

    Article  Google Scholar 

  38. V. V. Gordeev, “River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the Arctic Ocean,” in The Freshwater Budget of the Arctic Ocean, Ed. by E. L. Lewis, E. P. Jones, P. Lemke, (Kluwer, Dordrecht, 2000), pp. 297–322.

    Google Scholar 

  39. J. Gray, S. R. Jones, and A. D. Smith, “Discharges to the environment from the Sellafield Site, 1951–1992,” J. Radiol Prot. 15, 99–131 (1995).

    Article  Google Scholar 

  40. L. P. Gromet, L. A. Haskin, R. L. Koroteev, et al., “The “North American shale composite”: Its compilation, major and trace element characteristics,” Geochim. Cosmochim. Acta 48 (12), 2469–2482 (1984).

    Article  Google Scholar 

  41. J. P. Gwynn, A. Nikitin, V. Shershakov, et al., “Main results of the 2012 joint Norwegian–Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya,” J. Environ. Radioact. 151, 417–426 (2016).

    Article  Google Scholar 

  42. I. H. Harms and M. J. Karcher, “Kara Sea freshwater dispersion and export in the late 1990s,” J. Geophys. Res.: Oceans 110, C08007 (2005).

    Google Scholar 

  43. J. I. Hedges and J. H. Stern, “Carbon and nitrogen determinations of carbonate containing solids,” Limnol. Oceanogr. 29 (3), 657–663 (1984).

    Article  Google Scholar 

  44. M. Heikkilä, V. Pospelova, A. Forest, et al., “Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay,” Mar. Micropaleontol. 125, 1–24 (2016).

    Article  Google Scholar 

  45. J. A. Howe, R. Harland, F. R. Cottie, et al., “Dinoflagellate cysts as proxies for palaeoceanographic conditions in Arctic fjords,” Geol. Soc. London, Spec. Publ. 344 (1), 61–74 (2010).

    Article  Google Scholar 

  46. M. J. Karcher, M. Kulakov, S. Pivovarov, et al., “Atlantic water flow to the Kara Sea: comparing model results with observations,” in Siberian River Runoff in the Kara Sea: Characterization, Quantification, Variability and Environmental Significance, Proceedings in Marine Science Series vol. 6, Ed. by R. Stein, (Elsevier, New York, 2003), pp. 47–69.

    Google Scholar 

  47. P. Kershaw and A. Baxter, “The transfer of reprocessing wastes from north-west Europe to the Arctic,” Deep Sea Res., Part II 42, 1413–1448 (1995).

    Article  Google Scholar 

  48. Z. Kuzyk, C. Gobeil, and R. Macdonald, “210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging,” Global Biogeochem. Cycles 27 (2), 422–439 (2013).

    Article  Google Scholar 

  49. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2013, Vol. 1: Temperature, NOAA Atlas NESDIS Series vol. 73, Ed. by S. Levitus and A. Mishonov (National Oceanic and Atmospheric Administration, Silver Spring, MA, 2013).

  50. J. Matthiessen, M. Kunz-Pirrung, and P. J. Mudie, “Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff,” Int. J. Earth Sci. 89, 470–485 (2000).

    Article  Google Scholar 

  51. K. N. Mertens, S. Ribeiro, I. Bouimetarhan, et al., “Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: Investigating its potential as salinity proxy,” Mar. Micropaleontol. 70 (1–2), 54–69 (2009).

    Article  Google Scholar 

  52. P. Moffa-Sánchez, I. R. Hall, S. Barker, et al., “Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age,” Paleoceanography 29 (3), 160–175 (2014).

    Article  Google Scholar 

  53. M. A. Monetti, Worldwide Deposition of Strontium-90 through 1990 (USDOE Environmental Measurements Laboratory, Washington, DC, 1996).

    Book  Google Scholar 

  54. M. Montresor, C. Lovejoy, L. Orsini, et al., “Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis,” Polar Biol. 26, 186–194 (2003).

    Article  Google Scholar 

  55. I. Murdmaa, L. Polyak, E. Ivanova, et al., “Paleoenvironments in Russkaya Gavan’ Fjord (NW Novaya Zemlya, Barents Sea) during the last millennium,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 209, 141–154 (2004).

    Article  Google Scholar 

  56. K. Nordberg, H. L. Filipsson, M. Gustafsson, et al., “Climate, hydrographic variations and marine benthic hypoxia,” J. Sea Res. 46, 187–200 (2001).

    Article  Google Scholar 

  57. E.-M. Nothig, Y. Okolodkov, V. V. Larionov, et al., “Phytoplankton distribution in the inner Kara Sea: a comparison of three summer investigations,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 163–183.

    Google Scholar 

  58. I. Osvath, P. P. Povinec, and M. S. Baxter, “Kara Sea radioactivity assessment,” Sci. Total Environ. 237–238, 167–179 (1999).

    Article  Google Scholar 

  59. D. Phipps and G. Playford, “Laboratory techniques for extraction of palynomorphs from sediments,” Pap.-Univ. Queensl., Dep. Geol. 11, 1–23 (1984).

    Google Scholar 

  60. L. Polyak, I. Murdmaa, and E. Ivanova, “A high-resolution, 800-year glaciomarine record from Russkaya Gavan’, a Novaya Zemlya fjord, eastern Barents Sea,” Holocene 14, 628–634 (2004).

    Article  Google Scholar 

  61. Y. I. Polyakova and Y. A. Novichkova, “Diatoms and aquatic palynomorphs in the White Sea sediments as indicators of sedimentation processes and paleoceanography,” in The Handbook of Environmental Chemistry (Springer-Verlag, Berlin, 2018), Vol. 82, pp. 67–104.

    Google Scholar 

  62. V. Pospelova, S. Esenkulova, S. C. Johannessen, et al., “Organic-walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): a sediment trap study,” Mar. Micropaleontol. 75, 17–37 (2010).

    Article  Google Scholar 

  63. V. Putyrskaya, E. Klemt, S. Röllin, et al., “Dating of sediments from four Swiss prealpine lakes with 210Pb determined by gamma-spectrometry: progress and problems,” J. Environ. Radioact. 145, 78–94 (2015).

    Article  Google Scholar 

  64. J. A. Robbins and D. N. Edgington, “Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137,” Geochim. Cosmochim. Acta 39, 285–304 (1975).

    Article  Google Scholar 

  65. K.-L. Rørvik, K. Grøsfjeld, and M. Hald, “A late Holocene climate history from Malangen, a north Norwegian Fjord, based on dinocysts,” Norw. J. Geol. 89, 135–147 (2009).

    Google Scholar 

  66. E. Sakshaug, “Primary and secondary production in the Arctic Seas,” in The Organic Carbon Cycle in the Arctic Ocean (Springer-Verlag, New York, 2004), pp. 57–81.

    Google Scholar 

  67. B. Salbu, A. I. Nikitin, P. Strand, et al., “Radioactive contamination from dumped nuclear waste in the Kara Sea— results from the joint Russian-Norwegian expeditions in 1992–1994,” Sci. Total Environ. 202, 185–198 (1997).

    Article  Google Scholar 

  68. K.-L. Sjöblom, A. Salo, J. M. Bewers, et al., “International Arctic Seas Assessment Project,” Sci. Total Environ. 237–238, 153–166 (1999).

    Article  Google Scholar 

  69. R. Stein, Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment (Elsevier, Amsterdam, 2008), Vol. 2, pp. 1–592.

    Google Scholar 

  70. R. Stein, K. Dittmers, K. Fahl, et al., “Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record,” Quat. Sci. Rev. 23, 1485–1511 (2004).

    Article  Google Scholar 

  71. D. K. Stoecker, D. E. Gustafson, J. R. Merrell, et al., “Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice,” J. Phycol. 33, 585–595 (1997).

    Article  Google Scholar 

  72. P. Strand, B. Howard, A. Aarkrog, et al., “Radioactive contamination in the Arctic—sources, dose assessment and potential risks,” J. Environ. Radioact. 60, 5–21 (2002).

    Article  Google Scholar 

  73. UNSCEAR 2000 Report, Vol. 1: Sources and Effects of Ionizing Radiation (UN Scientific Committee on the Effects of Atomic Radiation, New York, 2000).

  74. L. von Gunten, M. Grosjean, J. Beer, et al., “Age modeling of young non-varved lake sediments: methods and limits. Examples from two lakes in Central Chile,” J. Paleolimnol. 42, 401–412 (2009).

    Article  Google Scholar 

  75. E. Voronina, L. Polyak, A. de Vernal, et al., “Holocene variations of sea-surface conditions in the southeastern Barents Sea, reconstructed from dinoflagellate cyst assemblages,” J. Quat. Sci. 16, 717–726 (2001).

    Article  Google Scholar 

  76. J. J. Zeeberg and S. L. Forman, “Changes in glacier extent on north Novaya Zemlya in the twentieth century,” Holocene 11 (2), 161–175 (2001).

    Article  Google Scholar 

  77. K. A. F. Zonneveld, F. Marret, G. J. M. Versteegh, et al., “Atlas of modern dinoflagellate cyst distribution based on 2405 data points,” Rev. Palaeobot. Palynol. 191, 1–197 (2013).

    Article  Google Scholar 

  78. M. M. Zweng, J. R. Reagan, J. I. Antonov, et al., World Ocean Atlas 2013, Vol. 2: Salinity, NOAA Atlas NESDIS Series vol. 74, Ed. by S. Levitus and A. Mishonov (National Oceanic and Atmospheric Administration, Silver Spring, MA, 2013).

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to Academician A.P. Lisitsyn for general supervision of the study, to the captain of the R/V “Professor Shtokman” and its the crew and scientific staff, in particular, the head of the expedition, Academician M.V. Flint, for providing the material for research. The authors are especially grateful to M.D. Kravchishina for her multifaceted assistance during writing of the article and to A.G. Boev for help with electron microscopic studies.

Funding

This study was financially supported by state task of IO RAS (topic no. 0149-2019-0007) and a grant from the Russian Foundation for Basic Research (project no. 19-05-50 090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Novichkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novichkova, E.A., Reykhard, L.E., Belyaev, N.A. et al. Variability of Sedimentation Processes in Northern Part of East Novaya Zemlya Trough in the Anthropocene. Oceanology 60, 664–681 (2020). https://doi.org/10.1134/S0001437020040165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020040165

Keywords:

Navigation