Skip to main content
Log in

Introducing an Organic Hole Transporting Material as a Bilayer to Improve the Efficiency and Stability of Perovskite Solar Cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Although perovskite solar cells (PSCs) have achieved high power conversion efficiency (PCE) by utilizing 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-Spirobifluorene (Spiro-OMeTAD) as hole transporting material (HTM), the reproducibility and stability of PSCs are still a pressing concern. Herein, we introduced a solvent processed organic-organic bilayer based on 2-(4-(7-(9,9-dimethylacridin-10(9H)-yl)-9,9-diethyl-9H-fluoren-2-yl)phenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (AFpPPI) and Spiro-OMeTAD in layer to layer as HTM in PSCs. The devices configured with AFpPPI/Spiro-OMeTAD bilayer achieved a maximum PCE of 19.9% in mesoporous-TiO2 (mp-TiO2) structure with perovskite absorber of Cs0.05Rb0.05(FAPbI3)0.76 (MAPbBr3)0.14. The properties of the bilayer structure were analyzed with steady-state photoluminescence, ultra-violet photoelectron and impedance spectroscopy. The AFpPPI/Spiro-OMeTAD improved open-circuit voltage (Voc) by lowering the quasi-Fermi energy level for holes and reducing the charge recombination, resulting in high Voc (1.14 V in the champion cell) and high fill factor (FF) that lead to high PCE. The addition of AFpPPI layer improves the quality of Spiro-OMeTAD and provides pinhole-free film. Moreover, the stability is improved in controlled temperature and humid conditions. This work affords a new approach for commercial applications of PSCs with better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep., 2, 591 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. M. Hu, C. Bi, Y. Yuan, Z. Xiao, Q. Dong, Y. Shao, and J. Huang, Small, 11, 2164 (2016).

    Article  CAS  Google Scholar 

  4. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 982 (2016).

    Article  CAS  Google Scholar 

  5. D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv., 2, e1501170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, and A. Hagfeldt, Science, 354, 206 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science, 342, 341 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science, 342, 344 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nat. Phys., 11, 582 (2015).

    Article  CAS  Google Scholar 

  10. J. Lee, G. W. Kim, M. Kim, S. A. Park, and T. Park, Adv. Energy Mater., 10, 1902662 (2020).

    Article  CAS  Google Scholar 

  11. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature, 499, 316 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater., 13, 897 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. V. M. Arivunithi, S. S. Reddy, V. G. Sree, H.-Y. Park, J. Park, Y.-C. Kang E.-S. Shin, Y.-Y. Noh, M. Song, and S.-H. Jin, Adv. Energy Mater., 8, 1801637 (2018).

    Article  CAS  Google Scholar 

  15. National Renewable Energy Laboratory. Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efflciency.html (2019).

  16. G.-W. Kim, G. Kang, K. Choi, H. Choi, and T. Park, Adv. Energy Mater., 8, 1801386 (2018).

    Article  CAS  Google Scholar 

  17. P. Agarwala and D. Kabra, J. Mater. Chem. A, 5, 1348 (2017).

    Article  CAS  Google Scholar 

  18. Z. Hawash, L. K. Ono, and Y. Qi, Adv. Mater. Interfaces, 5, 1700623 (2018).

    Article  CAS  Google Scholar 

  19. J. Wang, K. Liu, L. Ma, and X. Zhan, Chem. Rev., 116, 14675 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. A. Abate, S. Paek, F. Giordano, J.-P. Correa-Baena, M. Saliba, P. Gao, T. Matsui, J. Ko, S. M. Zakeeruddin, K. H. Dahmen, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci., 8, 2946 (2015).

    Article  CAS  Google Scholar 

  21. P. Ganesan, K. Fu, P. Gao, I. Raabe, K. Schenk, R. Scopelliti, J. Luo, L. H. Wong, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci., 8, 1986 (2015).

    Article  CAS  Google Scholar 

  22. K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V. Jankauskas, and M. K. Nazeeruddin, Angew. Chem., Int. Ed., 55, 7464 (2016).

    Article  CAS  Google Scholar 

  23. M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Grätzel, and M. K. Nazeeruddin, Nat. Energy., 1, 1 (2016).

    Article  CAS  Google Scholar 

  24. K. T. Cho, O. Trukhina, C. Roldán-Carmona, M. Ince, P. Gratia, G. Grancini, P. Gao, T. Marszalek, W. Pisula, P. Y. Reddy, T. Torres, and M. K. Nazeeruddin, Adv. Energy Mater., 7, 1601733 (2017).

    Article  CAS  Google Scholar 

  25. G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. I. Kim, L. Pyeon, J. Lee, and T. Park, Energy Environ. Sci., 9, 2326 (2016).

    Article  CAS  Google Scholar 

  26. Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, F. Lin, S. Liu, D. Yu, and Q. Zhao, J. Mater. Chem. A, 5, 14881 (2017).

    Article  CAS  Google Scholar 

  27. Z. Yu and L. Sun, Adv. Energy Mater., 5, 1500213 (2015).

    Article  CAS  Google Scholar 

  28. Y. Liu, Z. Hong, Q. Chen, H. Chen, W.-H. Chang, Y. Yang, T.-B. Song, and Y. Yang, Adv. Mater., 28, 440 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K. Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko, and M. K. Nazeeruddin, Adv. Mater., 29, 1606555 (2017).

    Article  CAS  Google Scholar 

  30. X. Sun, Q. Xue, Z. Zhu, Q. Xiao, K. Jiang, H.-L. Yip, H. Yan, and Z. Li, Chem. Sci., 9, 2698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Lee, M. M. Byranvand, G. Kang, S. Y. Son, S. Song, G.-W. Kim, and T. Park, J. Am. Chem. Soc., 139, 12175 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. G.-W. Kim, J. Lee, G. Kang, T. Kim, and T. Park, Adv. Energy Mater., 8, 1701935 (2018).

    Article  CAS  Google Scholar 

  33. S. S. Reddy, V. M. Arivunithi, V. G. Sree, H. Kwon, J. Park, Y. C. Kang, H. Zhu, Y. Y. Noh, and S.-H. Jin, Nano Energy, 56, 284 (2019).

    Article  CAS  Google Scholar 

  34. Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, and Q. Zhao, Nat. Commun., 7, 10228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y. Zhao, W. Zhou, W. Ma, S. Meng, H. Li, J. Wei, R. Fu, K. Liu, D. Yu, and Q. Zhao, ACS Energy Lett., 1, 266 (2016).

    Article  CAS  Google Scholar 

  36. J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu, Y. Leprince-Wang, D. Yu, and Q. Zhao, Nano Energy, 26, 139 (2016).

    Article  CAS  Google Scholar 

  37. R. Fu, Y. Zhao, Q. Li, W. Zhou, D. Yu, and Q. Zhao, Chem. Commun., 53, 1829 (2017).

    Article  CAS  Google Scholar 

  38. Y. Li, J. K. Cooper, W. Liu, C. M. Sutter-Fella, M. Amani, J. W. Beeman, A. Javey, J. W. Ager, Y. Liu, and F. M. Toma, Nat. Commun., 7, 12446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, Adv. Mater., 28, 686 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. W. X. Zhang, Y.-C. Wang, X. D. Li, C. J. Song, L. Wan, K. Usman, and J. F. Fang, Adv. Sci., 5, 1800159 (2018).

    Article  CAS  Google Scholar 

  41. N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I. Seok, J. Lee, and J. Seo, Nat. Energy, 3, 682 (2018).

    Article  CAS  Google Scholar 

  42. C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, K. Sopian, and M. A. M. Teridi, J. Mater. Chem. A, 4, 15788 (2016).

    Article  CAS  Google Scholar 

  43. S. S. Reddy, V. G. Sree, K. Gunasekar, W. Cho, Y. -S. Gal, M. Song, J.-W. Kang, and S.-H. Jin, Adv. Opt. Mater., 4, 1236 (2016).

    Article  CAS  Google Scholar 

  44. N. Chakravarthi, K. Gunasekar, W. Cho, D. X. Long, Y.-H. Kim, C. E. Song, J.-C. Lee, A. Facchetti, M. Song, Y.-Y. Noh, and S.-H. Jin, Energy Environ. Sci., 9, 2595 (2016).

    Article  CAS  Google Scholar 

  45. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li, and S. Liu, Adv. Energy Mater., 8, 1701757 (2018).

    Article  CAS  Google Scholar 

  46. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. P. Mao, Q. Zhou, Z. Jin, H. Li, and J. Wang, ACS Appl. Mater. Interfaces, 8, 23837 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myungkwan Song or Sung-Ho Jin.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the National Research Foundation (NRF-2019R1A2B5B03100048) of the Ministry of Science and ICT.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivunithi, V.M., Park, HY., Reddy, S.S. et al. Introducing an Organic Hole Transporting Material as a Bilayer to Improve the Efficiency and Stability of Perovskite Solar Cells. Macromol. Res. 29, 149–156 (2021). https://doi.org/10.1007/s13233-021-9020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9020-9

Keywords

Navigation