Skip to main content
Log in

Uniform Threshold for Fixation of the Stochastic Sandpile Model on the Line

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the abelian stochastic sandpile model. In this model, a site is deemed unstable when it contains more than one particle. Each unstable site, independently, is toppled at rate 1, sending two of its particles to neighbouring sites chosen independently. We show that when the initial average density is less than 1/2, the system locally fixates almost surely. We achieve this bound by analysing the parity of the total number of times each site is visited by a large number of particles under the sandpile dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcaraz, F.C., Pyatov, P., Rittenberg, V.: Two-component abelian sandpile models. Phys. Rev. E 79, 042102 (2009). https://doi.org/10.1103/PhysRevE.79.042102

    Article  ADS  Google Scholar 

  2. Amir, G., Gurel-Gurevich, O.: On fixation of activated random walks. Electron. Commun. Probab. 15, 119–123 (2010). https://doi.org/10.1214/ECP.v15-1536

    Article  MathSciNet  MATH  Google Scholar 

  3. Asselah, A., Schapira, B., Rolla, L.T.: Diffusive bounds for the critical density of activated random walks, Preprint. arXiv:1907.12694 (2019)

  4. Bond, B., Levine, L.: Abelian networks I. Foundations and examples. SIAM J. Discret. Math. 30, 856–874 (2016). https://doi.org/10.1137/15M1030984

    Article  MathSciNet  MATH  Google Scholar 

  5. Bond, B., Levine, L.: Abelian networks II: halting on all inputs. Selecta Mathematica 22, 319–340 (2016). https://doi.org/10.1007/s00029-015-0192-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Bond, B., Levine, L.: Abelian networks III: the critical group. J. Algebr. Comb. 43, 635–663 (2016). https://doi.org/10.1007/s10801-015-0648-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabezas, M., Rolla, L.T., Sidoravicius, V.: Non-equilibrium phase transitions: activated random walks at criticality. J. Stat. Phys. 155, 1112–1125 (2014). https://doi.org/10.1007/s10955-013-0909-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Candellero, E., Ganguly, S., Hoffman, C., Levine, L.: Oil and water: a two-type internal aggregation model. Ann. Probab. 45, 4019–4070 (2017). https://doi.org/10.1214/16-AOP1157

    Article  MathSciNet  MATH  Google Scholar 

  9. Dartois, A., Rossin, D.: Height arrow model. In: Proceedings of the FPSAC 2004 ACTES SFCA 2004, Vancouver Canada, p. 87 (2004)

  10. Dhar, D.: The Abelian sandpile and related models. Physica A 263, 4–25 (1999). https://doi.org/10.1016/S0378-4371(98)00493-2

    Article  ADS  Google Scholar 

  11. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369, 29–70 (2006). https://doi.org/10.1016/j.physa.2006.04.004

    Article  ADS  MathSciNet  Google Scholar 

  12. Diaconis, P., Fulton, W.: A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec Torino 49, 95–119 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Dickman, R.: Nonequilibrium phase transitions in epidemics and sandpiles. Physica A 306, 90–97 (2002). https://doi.org/10.1016/S0378-4371(02)00488-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dickman, R., Rolla, L.T., Sidoravicius, V.: Activated random walkers: facts, conjectures and challenges. J. Stat. Phys. 138, 126–142 (2010). https://doi.org/10.1007/s10955-009-9918-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Eriksson, K.: Chip firing games on mutating graphs. SIAM J. Discret. Math. 9, 118–128 (1996). https://doi.org/10.1137/S0895480192240287

    Article  MathSciNet  MATH  Google Scholar 

  16. Fey, A., Meester, R.: Critical densities in sandpile models with quenched or annealed disorder. Markov Process Relat. Fields 21, 57–83 (2015). (arXiv:1211.4760)

    MathSciNet  MATH  Google Scholar 

  17. Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000). https://doi.org/10.1080/00018730050198152

    Article  ADS  Google Scholar 

  18. Manna, S.S.: Two-state model of self-organized criticality. J. Phys. A 24, 363–369 (1991). https://doi.org/10.1088/0305-4470/24/7/009

    Article  ADS  MathSciNet  Google Scholar 

  19. Munoz, M.A., Dickman, R., Pastor-Satorras, R., Vespignani, A., Zapperi, S.: Sandpiles and absorbing-state phase transitions: recent results and open problems. In: Proceedings of the AIP Conference Proceedings, vol. 574, pp. 102–110. AIP. https://doi.org/10.1063/1.1386824 (2001)

  20. Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model of self-organized criticality. Phys. Rev. Lett. 77, 5079 (1996). https://doi.org/10.1103/PhysRevLett.77.5079

    Article  ADS  Google Scholar 

  21. Rolla, L.T.: Activated random walks on \(Z^d\), 2019. Preprint. arXiv:1906.05037

  22. Rolla, L.T., Sidoravicius, V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on \(Z\). Invent Math. 188, 127–150 (2012). https://doi.org/10.1007/s00222-011-0344-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Rolla, L.T., Tournier, L.: Non-fixation for biased activated random walks. Ann. Inst. H Poincaré Probab. Stat. 54, 938–951 (2018). https://doi.org/10.1214/17-AIHP827

    Article  MathSciNet  MATH  Google Scholar 

  24. Sadhu, T., Dhar, D.: Steady state of stochastic sandpile models. J. Stat. Phys. 134, 427–441 (2009). https://doi.org/10.1007/s10955-009-9683-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shellef, E.: Nonfixation for activated random walks. ALEA Latin Am. J. Probab. Math. Stat. 7, 137–149 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Sidoravicius, V., Teixeira, A.: Absorbing-state transition for stochastic sandpiles and activated random walks. Electron J. Probab. 22, 33 (2017). https://doi.org/10.1214/17-EJP50

    Article  MathSciNet  MATH  Google Scholar 

  27. Stauffer, A., Taggi, L.: Critical density of activated random walks on transitive graphs. Ann. Probab. 46, 2190–2220 (2018). https://doi.org/10.1214/17-AOP1224

    Article  MathSciNet  MATH  Google Scholar 

  28. Taggi, L.: Absorbing-state phase transition in biased activated random walk. Electron. J. Probab. 21, 13 (2016). https://doi.org/10.1214/16-EJP4275

    Article  MathSciNet  MATH  Google Scholar 

  29. Taggi, L.: Active phase for activated random walks on \(\mathbb{Z}^d\), \(d\ge 3\), with density less than one and arbitrary sleeping rate. Ann. Inst. Henri Poincaré Probab. Stat. 55, 1751–1764 (2019). https://doi.org/10.1214/18-aihp933

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumanti Podder.

Additional information

Communicated by Stefano Olla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, M., Rolla, L.T. Uniform Threshold for Fixation of the Stochastic Sandpile Model on the Line. J Stat Phys 182, 52 (2021). https://doi.org/10.1007/s10955-021-02731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02731-3

Keywords

Navigation