Skip to main content
Log in

A Methodology to Identify the Releasing of the Amide-Containing β-Glucan from the Usnea Lichen: A Spectroscopic Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer fractions from a biological matrix have been well-characterized by vibrational spectroscopy, XPS, CP/MAS 13C NMR, MALDI-TOF mass spectrometry, thermal analysis, and SEM, and all the results had corroborated for the chemical extraction of β-glucan polymers grafted amino groups by peptide bonds (namely NH2-β-glucan) as well as a cyclic oligosaccharide. Our primary purpose was to explore the polysaccharide extraction parameters in the sample of Usnea lichen, mainly in terms of extraction time and concentration of the extractive alkaline solution, to investigate the chemical characterization of the polysaccharide fractions. The low-cost methodology adopted in this work was able to extract the materials of interest with the expected efficiency without the significant impact of chemicals on the environment. The chemical extraction of an NH2-bonded biopolymer can be a very interesting material for many applications since chemical functionalization is crucial to introducing specific properties for developing new materials. In this regard, the cyclic β-glucan described as a very porous material is highly desirable for various applications in the biomedical, biotechnological, and environmental areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bauer S (2012) Mass spectrometry for characterizing plant cell wall polysaccharides. Front Plant Sci 3:45. https://doi.org/10.3389/fpls.2012.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belton PS, Colquhoun IJ, Grant A, Wellner N, Field JM, Shewry PR, Tatham AS (1995) FTIR and NMR studies on the hydration of a high-Mr subunit of glutenin. Int J Biol Macromol 17(2):74–80. https://doi.org/10.1016/0141-8130(95)93520-8

    Article  CAS  PubMed  Google Scholar 

  3. Belton PS, Gil AM, Grant A, Alberti E, Tatham AS (1998) Proton and carbon NMR measurements of the effects of hydration on the wheat protein ω-gliadin. Spectrochim Acta A 54(7):955–966. https://doi.org/10.1016/S1386-1425(98)00025-0

    Article  Google Scholar 

  4. Carlsson G, Strom G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 14:2492–2497

    Article  Google Scholar 

  5. Chizhov AO, Tsvetkov YE, Nifantiev NE (2019) Gas-phase fragmentation of cyclic oligosaccharides in tandem mass spectrometry. Molecules. https://doi.org/10.3390/molecules24122226

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dhamelincourt P, Ramirez FJ (1993) Polarized micro-Raman and FT-IR spectra of l-glutamine. Appl Spectrosc 47(4):446–451

    Article  CAS  Google Scholar 

  7. Ding C, Zhang M, Li G (2015) Effect of cyclic freeze-thawing process on the structure and properties of collagen. Int J Biol Macromol 80:317–323. https://doi.org/10.1016/j.ijbiomac.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  8. Edwards HGM, Newton EM, Wynn-Williams DD (2003) Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. J Mol Struct 651–653:27–37. https://doi.org/10.1016/S0022-2860(02)00626-9

    Article  CAS  Google Scholar 

  9. Edwards HGM, Newton EM, Wynn-Williams DD, Coombes SR (2003) Molecular spectroscopic studies of lichen substances 1: parietin and emodin. J Mol Struct 648(1–2):49–59. https://doi.org/10.1016/S0022-2860(02)00384-8

    Article  CAS  Google Scholar 

  10. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739. https://doi.org/10.1002/pen.11821

    Article  CAS  Google Scholar 

  11. Fernandes RF, Porto AB, Flores LS, Maia LF, Corrêa CC, Spielmann AS, Edwards HGM, de Oliveira LFC (2018) Nature of light-absorbing pigments from Brazilian lichens identified by Raman spectroscopy. Vib Spectrosc 99:59–66. https://doi.org/10.1016/j.vibspec.2018.08.007

    Article  CAS  Google Scholar 

  12. Figueiró SD, Góes JC, Moreira RA, Sombra ASB (2004) On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan-collagen films. Carbohydr Polym 56(3):313–320. https://doi.org/10.1016/j.carbpol.2004.01.011

    Article  CAS  Google Scholar 

  13. Gidley MJ, Bociek SM (1986) 13C cross-polarization–magic angle spinning (CP–MAS) n.m.r. studies of α- and β-cyclodextrins: resolution of all conformationally-important sites. J Chem Soc Chem Commun 15:1223–1226. https://doi.org/10.1039/C39860001223

    Article  Google Scholar 

  14. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES (2009) XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf Sci 603(18):2849–2860. https://doi.org/10.1016/j.susc.2009.07.029

    Article  CAS  Google Scholar 

  15. Huaduarugua NG, Bandur GN, Hădărugă DI (2018) Thermal analyses of cyclodextrin complexes. In: Fourmentin S, Crini G, Lichtfouse E (eds) Cyclodextrin fundamentals, reactivity and analysis. Springer International Publishing, Cham, pp 155–221. https://doi.org/10.1007/978-3-319-76159-6_4

    Chapter  Google Scholar 

  16. Huneck S, Yoshimura I (1996) Identification of lichen substances. In: Huneck S, Yoshimura I (eds) Identification of lichen substances. Springer, Berlin, Heidelberg, pp 11–123. https://doi.org/10.1007/978-3-642-85243-5_2

    Chapter  Google Scholar 

  17. Kappen L (1973) Response to extreme environments. The Lichens. https://doi.org/10.1016/B978-0-12-044950-7.50015-5

    Article  Google Scholar 

  18. Karunakaran C, Christensen CR, Gaillard C, Lahlali R, Blair LM, Perumal V, Miller SS, Hitchcock AP (2015) Introduction of soft x-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS ONE. https://doi.org/10.1371/journal.pone.0122959

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaur R, Sharma M, Ji D, Xu M, Agyei D (2019) Structural features, modification, and functionalities of beta-glucan. In: Fibers, vol 8, issue 1. https://doi.org/10.3390/fib8010001

  20. Kizil R, Irudayaraj J (2007) Rapid evaluation and discrimination of γ-irradiated carbohydrates using FT-Raman spectroscopy and canonical discriminant analysis. J Sci Food Agric 87(7):1244–1251. https://doi.org/10.1002/jsfa.2830

    Article  CAS  Google Scholar 

  21. Landoulsi J, Genet MJ, Fleith S, Touré Y, Liascukiene I, Méthivier C, Rouxhet PG (2016) Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination. Appl Surf Sci 383:71–83. https://doi.org/10.1016/j.apsusc.2016.04.147

    Article  CAS  Google Scholar 

  22. Lawrey JD (1986) Biological role of lichen substances. The Bryologist 89(2):111–122. https://doi.org/10.2307/3242751

    Article  CAS  Google Scholar 

  23. Lee K, Kwon Y, Hwang J, Choi Y, Kim K, Koo H-J, Seo Y, Jeon H, Choi J (2019) Synthesis and functionalization of β-glucan particles for the effective delivery of doxorubicin molecules. ACS Omega 4(1):668–674. https://doi.org/10.1021/acsomega.8b02712

    Article  CAS  Google Scholar 

  24. Lopes-Rodrigues M, Puiggalí-Jou A, Martí-Balleste D, del Valle LJ, Michaux C, Perpète EA, Alemán C (2018) Thermomechanical response of a representative porin for biomimetics. ACS Omega 3:7856–7867. https://doi.org/10.1021/acsomega.8b00463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopez-Sanchez P, Wang D, Zhang Z, Flanagan B, Gidley MJ (2016) Microstructure and mechanical properties of arabinoxylan and (1,3;1,4)-β-glucan gels produced by cryo-gelation. Carbohydr Polym 151:862–870. https://doi.org/10.1016/j.carbpol.2016.06.038

    Article  CAS  PubMed  Google Scholar 

  26. Lopez GP, Castner DG, Ratner BD (1991) XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf Interface Anal 17:267–272

    Article  CAS  Google Scholar 

  27. Maia LF, Gonzaga TA, Carvalho RG, Leite CM, Lobo-Hajdu G, Aguiar JAK, Edwards HGM, de Oliveira LFC (2016) Monitoring of sulfated polysaccharide content in marine sponges by Raman spectroscopy. Vib Spectrosc 87:149–156. https://doi.org/10.1016/j.vibspec.2016.10.002

    Article  CAS  Google Scholar 

  28. Mangolim CS, da Silva TT, Fenelon VC, do Nascimento A, Sato F, Matioli G (2017) Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability. Food Chem 232:369–378. https://doi.org/10.1016/j.foodchem.2017.04.031

    Article  CAS  PubMed  Google Scholar 

  29. Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36(24):2905–2920. https://doi.org/10.1002/pen.10692

    Article  CAS  Google Scholar 

  30. Mathiot C, Ponge P, Gallard B, Sassi J-F, Delrue F, Le Moigne N (2019) Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr Polym 208:142–151. https://doi.org/10.1016/j.carbpol.2018.12.057

    Article  CAS  PubMed  Google Scholar 

  31. Mittal V (2008) Mechanical and gas permeation properties of compatibilized polypropylene–layered silicate nanocomposites. J Appl Polym Sci 107(2):1350–1361. https://doi.org/10.1002/app.26952

    Article  CAS  Google Scholar 

  32. Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12(7):920–925. https://doi.org/10.1002/mabi.201200040

    Article  CAS  PubMed  Google Scholar 

  33. Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi HO, Yamamoto T (2016) Label-free chemical imaging of fungal spore walls by raman microscopy and multivariate curve resolution analysis. Sci Rep 6(November 2015):1–10. https://doi.org/10.1038/srep27789

    Article  CAS  Google Scholar 

  34. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10):1487–1503. https://doi.org/10.1016/j.progpolymsci.2013.06.001

    Article  CAS  Google Scholar 

  35. Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67(3):199–208. https://doi.org/10.1055/s-2001-12012

    Article  CAS  PubMed  Google Scholar 

  36. Pelosi L, Bulone V, Heux L (2006) Polymorphism of curdlan and (1→3)-β-d-glucans synthesized in vitro: a 13C CP-MAS and X-ray diffraction analysis. Carbohydr Polym 66(2):199–207. https://doi.org/10.1016/j.carbpol.2006.03.003

    Article  CAS  Google Scholar 

  37. Pelosi L, Imai T, Chanzy H, Heux L, Buhler E, Bulone V (2003) Structural and morphological diversity of (1→3)-β-d-glucans synthesized in vitro by enzymes from Saprolegnia monoïca. Comparison with a corresponding in vitro product from blackberry (Rubus fruticosus). Biochemistry 42(20):6264–6274. https://doi.org/10.1021/bi0340550

    Article  CAS  PubMed  Google Scholar 

  38. Pereira MI, Ruthes AC, Carbonero ER, Marcon R, Baggio CH, Freitas CS, Santos ARS, Eliasaro S, Sassaki GL, Gorin PAJ, Iacomini M (2010) Chemical structure and selected biological properties of a glucomannan from the lichenized fungus Heterodermia obscurata. Phytochemistry 71(17–18):2132–2139. https://doi.org/10.1016/j.phytochem.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  39. Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stab 92(5):802–812. https://doi.org/10.1016/j.polymdegradstab.2007.02.002

    Article  CAS  Google Scholar 

  40. Razzaq HAA, Pezzuto M, Santagata G, Silvestre C, Cimmino S, Larsen N, Duraccio D (2016) Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocolloids 58:276–283. https://doi.org/10.1016/j.foodhyd.2016.03.003

    Article  CAS  Google Scholar 

  41. Ruthes AC, Smiderle FR, Iacomini M (2015) d-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches. Carbohydr Polym 117:753–761. https://doi.org/10.1016/j.carbpol.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  42. Sagnelli D, Hebelstrup KH, Leroy E, Rolland-Sabaté A, Guilois S, Kirkensgaard JJK, Mortensen K, Lourdin D, Blennow A (2016) Plant-crafted starches for bioplastics production. Carbohydr Polym 152:398–408. https://doi.org/10.1016/j.carbpol.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  43. Sagnelli D, Kirkensgaard JJK, Valeria C, Giosafatto L (2017) All-natural bio-plastics using starch-betaglucan composites. Carbohydr Polym 172:237–245

    Article  CAS  Google Scholar 

  44. Saito H, Yokoi M, Yoshioka Y (1989) Effect of hydration on conformational change or stabilization of (1 .fwdarw. 3)-.beta.-d-glucans of various chain lengths in the solid-state as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 22(10):3892–3898. https://doi.org/10.1021/ma00200a014

    Article  CAS  Google Scholar 

  45. Smiderle FR, Carbonero ER, Mellinger CG, Sassaki GL, Gorin PAJ, Iacomini M (2006) Structural characterization of a polysaccharide and a β-glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry 67(19):2189–2196. https://doi.org/10.1016/j.phytochem.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  46. Sovrani V, de Jesus LI, Simas-Tosin FF, Smiderle FR, Iacomini M (2017) Structural characterization and rheological properties of a gel-like β-d-glucan from Pholiota nameko. Carbohydr Polym 169:1–8. https://doi.org/10.1016/j.carbpol.2017.03.093

    Article  CAS  PubMed  Google Scholar 

  47. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353(6298):488 LP-492 LP. https://doi.org/10.1126/science.aaf8287

    Article  CAS  Google Scholar 

  48. Stevens JS, de Luca AC, Pelendritis M, Terenghi G, Schroeder SLM (2013) Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf Interface Anal 45:1238–1246. https://doi.org/10.1002/sia.5261

    Article  CAS  Google Scholar 

  49. Synytsya A, Čopı́ková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54(1):97–106. https://doi.org/10.1016/S0144-8617(03)00158-9

    Article  CAS  Google Scholar 

  50. Synytsya A, Novak M (2014) Structural analysis of glucans. Ann Transl Med 2(2):1–14. https://doi.org/10.3978/j.issn.2305-5839.2014.02.07

    Article  CAS  Google Scholar 

  51. Torres-González L, Díaz-Ayala R, Vega-olivencia CA, López-Garriga J (2018) Characterization of recombinant his-tag protein immobilized onto functionalized gold nanoparticles. Sensors 18(4262):1–15. https://doi.org/10.3390/s18124262

    Article  CAS  Google Scholar 

  52. Trigui I, Yaich H, Sila A, Cheikh-Rouhou S, Bougatef A, Blecker C, Attia H, Ayadi MA (2018) Physicochemical properties of water-soluble polysaccharides from black cumin seeds. Int J Biol Macromol 117:937–946. https://doi.org/10.1016/j.ijbiomac.2018.05.202

    Article  CAS  PubMed  Google Scholar 

  53. Yousuf S, Choudhary MI, Atta-ur-Rahman (2014) Chapter 7—lichens: chemistry and biological activities. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 43. Elsevier, Amsterdam, p 223–259. https://doi.org/10.1016/B978-0-444-63430-6.00007-2

  54. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308(5724):1017 LP-1020 LP. https://doi.org/10.1126/science.1111347

    Article  CAS  Google Scholar 

  55. Zhang L, Hu Y, Duan X, Tang T, Shen Y, Hu B, Liu A, Chen H, Li C, Liu Y (2018) Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int J Biol Macromol 113:1–7. https://doi.org/10.1016/j.ijbiomac.2018.02.084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R. F. Fernandes and M. L. A. Temperini are indebted to FAPESP (Grant Nos. 2018/25422-9 and 2016/21070-5) for financial support. M.L.A. Temperini is also indebted to the CNPq fellowship. The authors would like to acknowledge the “Laboratório de Sólidos Lamelares” (Prof. Dr. Vera R. L. Constantino and Msc. Vagner R. Magri, Chemistry Institute of São Paulo University) for supporting the experiments of the purification process and Prof. dr. Adriano A. Spielmann for collecting the lichen sample. The authors also thank Prof. dr. Rodrigo G. Lacerda (Federal University of Minas Gerais) for all discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaella F. Fernandes.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, R.F., Alves, G.A.S., Gonçalves, R.V. et al. A Methodology to Identify the Releasing of the Amide-Containing β-Glucan from the Usnea Lichen: A Spectroscopic Study. J Polym Environ 29, 3105–3115 (2021). https://doi.org/10.1007/s10924-021-02104-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02104-7

Keywords

Navigation