Skip to main content
Log in

Fiftieth Anniversary of the Kola SG-3 Superdeep Borehole

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of a comprehensive study of electrical properties of the upper part of the Earth’s crust according to the data of lateral resistivity logging of the Kola SG-3 superdeep borehole and the results of deep and superdeep sounding using controlled sources and electrical profiling on the daylight surface are presented. The possibility of extrapolation of the Kola SG-3 temperature field to a depth below the bottomhole, up to the Moho discontinuity, taking into account the data MHD sounding with the Khibiny source and with the use of industrial power transmission lines (FENICS experiment) is considered. The results of frequency electromagnetic soundings with controlled sources are analyzed, and their geodynamic interpretation is performed together with the data of drilling the SG-3 borehole. The geological and geophysical data are interpreted in the Kola SG-3 section and on the daylight surface to search for homologs and define the nature of the intermediate conductive layer of the dilatancy-diffusion nature (DD layer) discovered in the Earth’s crust of the Baltic Shield at depths from 2–3 to 7–8 km. Based on the latest results of remote deep sounding (the Murman-2018 experiment), it is concluded that, in the vicinity of Kola SG-3 at a depth of 10–12 km, there is a boundary of “impenetrability” for direct current (for the galvanic mode). The geodynamic interpretation of the data is carried out taking into account the model by V.N. Nikolaevskii (1996); it has been suggested that the new boundary most closely corresponds to the brittle-to-quasi-plastic transition area of the Earth’s crust. The results are compared to the log data of the SG-3 borehole and the data of superdeep drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Astapenko, V.N., Zemnaya kora i mantiya territorii Belarusi po magnitotelluricheskim dannym (Crust and Mantle of the Belarusian Territory Characterized by Magnetotelluric Data), Minsk, 2012.

    Google Scholar 

  2. Astapenko, V.N. and Fainberg, E.B., The nature of an electrical conductivity anomaly in the Belarussian Antecline crust, Izv. Phys. Solid Earth, 1999, vol. 35, no. 5, pp. 396–401.

    Google Scholar 

  3. Atlas fizicheskikh svoistv porod razreza Kol’skoi sverkhglubokoi skvazhiny (Atlas of the Physical Properties of Rocks along the Profile of the Kola Superdeep Well), Kuznetsov, Yu.I., Ed., Moscow: VNIIYaGG, 1982.

  4. Bakhvalov, A.M., Zhamaletdinov, A.A., Kuznetsov, Yu.I., et al., An experience of using frequency analysis of sedimentation rhythmicity based on physical properties, Geol. Razved., 1981, no. 5, pp. 35–40.

  5. Barannik, M.B., Procedure of the Murman-2018 experiment, Nauka Tekhnol. Razrab., 2019, vol. 98, no. 4, pp. 50–56. https://doi.org/10.21455/std2019.4-5

    Article  Google Scholar 

  6. Batieva, I.D., Bel’kov, I.V., Vetrin, V.R., Vinogradov, A.N., Vinogradova, G.V., and Dubrovskii, M.I., Granitoidnye formatsii dokembriya severo-vostochnoi chasti Baltiiskogo shchita (Precambrian Granitoid Formations of the Northeastern Baltic Shield), Leningrad: Nauka, 1978.

  7. Berezovskii, N.S., Kuznetsov, Yu.I., and Vinogradov, A.N., Th heroic past and the “promising” present of the Kola Superdeep SG-3 Well, Karotazhnik, 2010, vol. 5, no. 194, pp. 170–200.

    Google Scholar 

  8. Bondarenko, A.T., Generalization of data on the electrical conductivity of igneous rocks at high temperatures in connection with the structure of the Earth’s crust and upper mantle, Dokl. Akad. Nauk SSSR, 1966, vol. 178, no. 5, pp. 1058–1060.

    Google Scholar 

  9. Cermák, V. and Laštoviková, M., Temperature profiles in the Earth of importance to deep electrical conductivity models, Pure Appl. Geophys., 1987, vol. 125, pp. 255–284.

    Article  Google Scholar 

  10. Dakhnov, V.N., Elektricheskaya razvedka neftyanykh i gazovykh mestorozhdenii (Electric Prospecting of Oil and Gas Deposits), Moscow: Gostoptekhizdat, 1953.

  11. Davidenko, I.V. and Goryainov, P.M., The tectonic caisson effect in rocks and ore deposits: an important phenomenon in geodynamics, Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 5, pp. 1212–1215.

    Google Scholar 

  12. Enenshtein, B.S., Anomalous conducting zones in the crystalline basement and possibilities for their detection using frequency electromagnetic sounding, Dokl. Akad. Nauk SSSR, 1978, vol. 242, no. 6, pp. 1299–1302.

    Google Scholar 

  13. Evolyutsiya zemnoi kory i endogennoi metallogenicheskoi zonal’nosti severo-vostochnoi chasti Baltiiskogo shchita (Evolution of the Earth’s Crust and the Endogenous Metallogenic Zonality of the Northeastern Baltic Shield) Bel’kov, I.V, Ed., Leningrad: Nauka, 1987.

  14. Fedynskii, V.V. and Riznichenko, Yu.V., Studies of the Earth’s crust, Vestn. Akad. Nauk SSSR, 1962, no. 6, pp. 86–89.

  15. Gan’chin, Y.V., Smithson, S.B., Morozov, I.B., et al., Seismic studies around the Kola Superdeep borehole, Russia, Tectonophysics, 1998, vol. 288, pp. 1–16.

    Article  Google Scholar 

  16. Geoelektricheskie issledovaniya s moshchnym istochnikom toka na Baltiiskom shchite (Geoelectrical Studies with a Powerful Current Source Performed on the Baltic Shield), Velikhov, E.P., Ed., Moscow: Nauka, 1989.

    Google Scholar 

  17. Geologicheskaya karta Kol’skogo regiona (severo-vostochnaya chast’ Baltiiskogo shchita) masshtaba 1 : 500 000 (Geological Map of the Kola Region, Northeastern Baltic Shield, Scale 1 : 500 000), Mitrofanov, F.P., Ed., Apatity: Geol. Inst. Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 1996.

  18. Glaznev, V.N., Kompleksnye geofizicheskie modeli litosfery Fennoskandii (Integrated Geophysical Lithosphere Models of the Fennoscandia), Apatity: KaeM, 2003.

  19. Hyndman, R.D., Vanjan, L.L., Marquis, G., and Law, L.K., The origin of electrically conductive lower continental crust: saline water or graphite?, Phys. Earth Planet. Inter., 1993, vol. 81, pp. 325–344.

    Article  Google Scholar 

  20. Karaev, N.A., Structure and origin of the “near-vertical” reflections of the Earth’s crust around the Kola Superdeep Well, in Seismogeologicheskaya model’ litosfery Severnoi Evropy: Laplandsko-Pechengskii raion (Seismogeological model of the lithosphere of Northern Europe: Lapland–Pechenga Region), Sharov, N.V, Ed., Apatity: KNTs RAN, 1997, pp. 116–135.

  21. Karus, E.V., Kuznetsov, O.L., Kuznetsov, Yu.I., et al., On the putative origin of seismic depth boundaries, Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 3, pp. 577–579.

    Google Scholar 

  22. Klabukov, B.N., Background and anomalous electrical conductivity of the crust of Karelia, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 328–336.

    Google Scholar 

  23. Kol’skaya sverkhglubokaya (Kola Superdeep Well), Kozlovskii. E.A., Ed., Moscow: Nedra, 1984.

  24. Kol’skaya sverkhglubokaya: Nauchnye rezul’taty i opyt issledovaniya (Kola Superdeep Well: Research Experience and Results), Orlov, V.P. and Laverov, N.P, Eds., Moscow: Minprirody RF, 1998.

  25. Kolobov, V.V., Barannik, M.B., Efimov, B.V., Zhamaletdinov, A.A., Shevtsov, A.N., and Kopytenko Yu.A., Energia-4 generator for monitoring seismically activee regions and electromagnetic sounding of the Earth’s crust: Experience of Application in the Kovdor-2015 experiment, Seism. Instrum., 2018, vol. 54, pp. 268–280. https://doi.org/10.3103/S0747923918030143

    Article  Google Scholar 

  26. Korja, T., Lahti, I., and Pedersen, L., The core conductive structure along the SVEKA profile in the Central part of the Baltic Shield, in Stroenie i dinamika Vostochnoi Evropy (Structure and Dynamics of the Eastern Europe), Moscow: Geokart, 2006, pt. 2, pp. 113–121.

  27. Korhonen, H. and Porkka, M.T., The structure of the Baltic Shield region on the basis of DSS and earthquake data, Pure Appl. Geophys., 1981, no. 6, pp. 1093–1099.

  28. Korja, T., Engels, M., Zhamaletdinov, A.A., Kovtun, A.A., Palshin, N.A., Smirnov, M.Yu., Tokarev, A.D., Asming, V.E., Vanyan, L.L., Vardaniants, I.L., et al., Crustal conductivity in Fennoscandia: A compilation of a database on crustal conductivity in Fennoscandian shield, Earth, Planets Space, 2002, no. 54, pp. 535–558.

  29. Kouznetsov, Yu.I. and Galdin, N.E., Interpretation of logging superdeep wells, Proc. VIII Int. Symp. on the Observation of the Continental Crust through Drilling, Tsukuba, Japan: AJST Auditorium, 1996, pp. 235–240.

  30. Kovtun, A.A., Stroenie kory i verkhnei mantii na severo–zapade Vostochno-Evropeiskoi platformy po dannym magnitotelluricheskikh zondirovanii (The Structure of Crust and Upper Mantle in the Northeast of the East European Platform from Magnetotelluric Sounding Data), Leningrad: LGU, 1989.

  31. Kremenetskii, A.A., Ikorskii, S.V., Kamenskii, I.L., and Sazonov, A.M., Geochemistry of the Precambrian Deep Crustal Zones, in Kol’skaya sverkhglubokaya (nauchnye rezul’taty i opyt issledovanii) (Kola Superdeep Borehole: (Scientific Results and Investigation Experience)), Moscow: MF Tekhnoneftegaz, 1998.

  32. Kukkonen, I.T., Temperature and heat flow density in a thick cratonic lithosphere: the SVEKA transect, Central Fennoscandian Shield, J. Geodyn, 1998, vol. 26, no. 1, pp. 111–136.

    Article  Google Scholar 

  33. Lanev, V.S. and Laneva, M.I., Kol’skaya sverkhglubokaya (The Kola Superdeep Well), Murmansk: Murman. kn. izd-vo, 1987.

  34. Litvinenko, V.S., Yermolin, Ye.Yu., Ingerov, O., Yegorov, A.S., and Zhamaletdinov, A.A., Magnetotelluric investigation across the Kola Super Deep Hole area, Extended Abstr. 22nd EM Induction Workshop, (Weimar, Germany, August 24–30, 2014), Weimar, 2014, pp. 1–5.

  35. Litvinenko, I.V., On some results of depth profiling of the Earth’s crust of various structural facies zones of the Kola Peninsula and Karelia, in Geologiya i glubinnoe stroenie vostochnoi chasti Baltiiskogo shchita (Geology and Deep Structure of the Eastern Part of the Baltic Shield), Leningrad: Nauka, 1968, pp. 183–190.

  36. Lockner, D., Hickman, S., Kuksenko, V.S., Ponomarev, A.V., Sidorin, A.Ya., Byerlee, J., and Khakaev, B., Laboratory-determined permeability of cores from the Kola superdeep well, USSR, Geophys. Res. Lett., 1991, vol. 18, no. 5, pp. 881–884.

    Article  Google Scholar 

  37. Luosto, U., Lanne, E., Korhonen, H., et al., Deep structure of the Earth’s crust on the SVEKA profile in Central Finland, Ann. Geophys., 1984, no. 2, pp. 559–570.

  38. Moisio, K. and Kaikkonen, P., The present-day rheology, stress field and deformation along the DSS profile Fennia in the central Fennoscandian shield, J. Geodyn., 2004, vol. 38, no. is. 2, pp. 161–184.

  39. Nikolaevskii, V.N., Cataclastic fracture of crustal rocks and anomalous geophysical fields, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 304–312.

    Google Scholar 

  40. Pearrson, S.J., Spravochnik po interpretatsii dannykh karotazha (Reference-Book for the Interpretation of Logging Data), Moscow: Nedra, 1966.

  41. Popov, Yu.A., Pevzner, S.L., Pimenov, V.P., and Pevzner, L.A., Geothermal Characteristics of the Kola Superdeep Borehole Section, Dokl., Earth Sci., 1999, vol. 369, no. 6, pp. 1398–1401.

    Google Scholar 

  42. Ranalli, G., Rheology of the crust and its role in tectonic reactivation, J. Geodyn., 2000, vol. 30, pp. 3–15.

    Article  Google Scholar 

  43. Sharov, N.V., Litosfera Severnoi Evropy po seismicheskim dannym (Northern European Lithosphere Characterized by Seismic Data), Petrozavodsk: KNTs RAN, 2017.

  44. Sharov, N.V. and Mitrofanov, F.P., Velocity heterogeneities in the lithosphere of the Fennoscandian (Baltic) shield, Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 64–67.

    Article  Google Scholar 

  45. Shevtsov, A.N., Processing and interpretation of depth frequency sounding data combined with audiomagnetotelluric measurements (Murman-2018 eksperiment), Nauka Tekhnol. Razrab., 2019, vol. 98, no. 4, pp. 19–33. https://doi.org/10.21455/std2019.4-2

    Article  Google Scholar 

  46. Shmonov, V.M., Vitovtova, V.M., and Zharikov, A.V., Relation between electrical conductivity and permeability of rocks in the continental crust: experimental estimates, Izv., Phys. Solid Earth, 2000, vol. 36, no. 3, pp. 246–251.

    Google Scholar 

  47. Sidorenko, Sv.A. and Sidorenko, A.V., Organicheskoe veshchestvo v osadochno-metamorficheskikh porodakh dokembriya (Organic Matter in Sedimentary–Metamorphic Precambrian Rocks), Moscow: Nauka, 1975.

    Google Scholar 

  48. Skorokhodov, A.A. and Kolobov, V.V., Remote sounding and data processing in the cumulative mode (Murman-2018 eksperiment), Nauka Tekhnol. Razrab., 2019, vol. 98, no. 4, pp. 43–49. https://doi.org/10.21455/std2019.4-4

    Article  Google Scholar 

  49. Stroenie litosfery rossiiskoi chasti Barents-regiona (Lithosphere Structure in the Russian Part of the Barents Region), Sharov, N.V, Mitrofanov, F.P, Verba, M.L, and Gillen, K, Eds., Petrozavodsk: KarNTsRAN, 2005.

  50. Struktura, svoistva, sostoyanie porod i geodinamika v geoprostranstve Kol’skoi sverkhglubokoi skvazhiny (SG-3) (Structure, Properties, State of the Rocks, and Geodynamics in the Geological Space of the Kola Superdeep Well (SG-3)), Gorbatsevich, F.F., Ed., St. Petersburg: Nauka. 2015.

    Google Scholar 

  51. The Superdeep Well on the Kola Peninsula, Kozlovsky, Ye.A., Ed., Berlin: Springer, 1987.

    Google Scholar 

  52. Tolstikhin, I.N., Izotopnaya geokhimiya geliya, argona i redkikh gazov (Isotope Geochemistry of Helium, Argon, and Rare Gases), Moscow: Nauka, 1986.

  53. Van’yan, L.L. and Pavlenkova, N.I., Low-velocity and high-conductivity layers at the base of the upper crust of the Baltic Shield, Izv., Phys. Solid Earth, 2002, vol. 38, no. 1, pp. 37–45.

    Google Scholar 

  54. Velikhov, E.P., Zhamaletdinov, A.A., Zhdanov, M.S., The Khibiny experiment, Zemlya Vselennaya, 1984, no. 5, pp. 12–18.

  55. Yardley, B.W.D. and Valley, J.W., The petrologic case for a dry lower crust, J. Geophys. Res., 1997, vol. 102, no. B6, pp. 12173–12185.

    Article  Google Scholar 

  56. Zemletryaseniya (Earthquakes), vol. 1 of Zemletryaseniya i mikroseismichnost’ v zadachakh sovremennoi geodinamiki Vostochno-Evropeiskoi platformy (Earthquakes and Microseismicity in the Modern Problems of the Eastern European Platform Geodynamics), Sharov, N.V., Malovichko, A.A., and Shchukin, Yu.K., Eds., Petrozavodsk: KarNTsRAN, 2007.

  57. Zhamaletdinov, A.A., Shevtsov, A.N., Tokarev, A.D., Korja, T., and Pedersen, L., Experiment on the deep frequency sounding and DC measurements in the Central Finland granitoid complex, in Electromagnetic Induction in the Earth: Proc. of the 14th Workshop in Sinaia (Romania), 1998, p. 83.

  58. Zhamaletdinov, A.A., Electrical conductivity of the Earth’s crust around the Zevs SLF antenna according to the results of direct- and alternate-current sounding, Vzaimodeistvie elektromagnitnykh polei KNCh-SNCh diapazona s ionosferoi i zemnoi koroi: Materialy I Vseros. (s mezhdunar. uchastiem) nauch.-prakt. seminara (The Interaction of ELF–SLF Electromagnetic Fields with the Ionosphere and the Earth’s Crust: Mater. I All-Russian (with Int. Participants) Sci.-Pract. Seminar), Apatity, 2015, pp. 63–71.

  59. Zhamaletdinov, A.A., Model’ elektroprovodnosti litosfery po rezul’tatam issledovanii s kontroliruemymi istochnikami polya (Baltiiskii shchit, Russkaya platforma) (The Model of Lithosphere Electrical Conductivity Based on Results of Investigations with Controlled Field Sources (the Baltic Shield, the Russian Platform)), Leningrad: Nauka, 1990.

  60. Zhamaletdinov, A.A., The nature of the Conrad discontinuity with respect to the results of Kola Superdeep Well drilling and the data of a deep geoelectrical survey, Dokl., Earth Sci., 2014, vol. 455, pp. 350–354.

    Article  Google Scholar 

  61. Zhamaletdinov, A.A., Equipment for studies of the fine structure of conductivity and anisotropy of electrical properties of rocks, in Petrofizicheskie issledovaniya Karelo-Kol’skogo regiona (Petrophysical Studies of the Karelia–Kola Region), Petrozavodsk, 1979, pp. 134–144.

    Google Scholar 

  62. Zhamaletdinov, A.A., Ivanov, A.P., Krul’, E.P., and Porai-Koshits, A.M., The first experience of the frequency electromagnetic sounding on the Kola Peninsula, in Geofizicheskie issledovaniya na Kol’skom poluostrove (Geophysical Studies on the Kola peninsula), Apatity: KFAN SSSR, 1973, pp. 14–21.

  63. Zhamaletdinov, A.A., Mitrofanov, F.P., Tokarev, A.D., and Shevtsov, A.N., The influence of lunar and solar tidal deformations on electrical conductivity and fluid regime of the Earth’s crust, Dokl. Earth Sci., 2000, vol. 371, no. 2, pp. 403–407.

    Google Scholar 

  64. Zhamaletdinov, A.A., Shevtsov, A.N., and Korotkova T. G., Lunisolar tides influence on electrical conductivity of the Earth’s crust in the territory of Kola Peninsula, Izv., Phys. Solid Earth, 2018, vol. 54, pp. 474–486.

    Article  Google Scholar 

  65. Zhamaletdinov, A.A., Shevtsov, A.N., Tokarev, A.D., and Korja, T., Electromagnetic frequency sounding of the crust beneath the Central Finland granitoid complex, Izv., Phys. Solid Earth, 2002, vol. 38, no. 11, pp. 954–967.

    Google Scholar 

  66. Zhamaletdinov, A.A., Shevtsov, A.N., Velikhov, E.P., Skorokhodov, A.A., Kolesnikov, V.E., Korotkova, T.G., Ryazantsev, P.A., Efimov, B.V., Kolobov, V.V., Barannik, M.B., Prokopchuk, P.I., Selivanov, V.N., Kopytenko, Yu.A., Kopytenko, E.A., Ismagilov, V.S., Petrishchev, M.S., Sergushin, P.A., Tereshchenko, P.E., Samsonov, B.V., Birulya, M.A., Smirnov, M.Yu., Kor’ya, T., Yampol’skii, Yu.M., Koloskov, A.V., Baru, N.A., Polyakov, S.V., Shchennikov, A.V., Druzhin, G.I., Dzhozviak, V., Reda, Ya., and Shchors, Yu.G., Study of interaction of ELF–ULF range (0.1–200 Hz) electromagnetic waves with the earth’s crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment), Izv., Atmos. Oceanic Phys., 2015, vol. 51, pp. 826–857.

    Article  Google Scholar 

  67. Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Kolobov, V.V., Kolesnikov, V.E., Skorokhodov, A.A., Korotkova, T.G., Ivonin, V.V., Ryazantsev, P.A., and Birulya, M.A., The Kovdor-2015 experiment: study of the parameters of a conductive layer of dilatancy–diffusion nature (DD layer) in the Archaean crystalline basement of the Baltic shield, Dokl., Earth Sci., 2017, vol. 474, no. 2, pp. 641–645. https://doi.org/10.1134/S1028334X17060095

    Article  Google Scholar 

  68. Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Skorokhodov, A.A., Kolobov, V.V., Ivonin, V.V., and Kolesnikov, V.V., The Murman-2018 experiment on remote sensing in order to study the “impenetrability” boundary at the transition between brittle and plastic states of the crystalline Earth’s crust, Dokl., Earth Sci., 2019, vol. 486, pp. 575–579.

    Article  Google Scholar 

  69. Zhamaletdinov, A.A., Study of the Cu-Ni productive suite of the Pechenga Structure on the Russian–Norway border zone with the use of MHD installation “Khibiny”, Minerals, 2019, vol. 9, pp. 96–109.

    Article  Google Scholar 

  70. Zijl, J.S.V. and Joubert, S.J., A crustal geoelectrical model for the South African Precambrian granitic terrain based on deep Schlumberger soundings, Geophysics, 1975, vol. 40, pp. 657–663.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Academician of the Russian Academy of Natural Sciences A.N. Vinogradov for the creative discussion of this work and constructive feedback. My deep appreciation goes to the organizational department of Kola SG-3 for providing color copies of the original data of the compensated lateral electrical logging, geothermy, cavernosity, and other parameters throughout the entire borehole. I also thank an anonymous reviewer for their critical evaluation that enabled us to significantly improve this work.

Funding

This work was supported by the Division of Earth Sciences, Russian Academy of Sciences, grant no. 6 “Geodynamics and Mechanisms of Lithospheric Deformation” (headed by Academician of the Russian Academy of Sciences A.O. Gliko); Russian Foundation for Basic Research, grant no. 18-05-00528 (A.A. Zhamaletdinov); and the state task of the Ministry of Education and Science of the Russian Federation – Geological Institute of the Kola Scientific Center, Russian Academy of Sciences, subject no. 0226-2019-0052 and the Center of Physical-Technical Problems of Power Engineering of the North, Kola Scientific Center, Russian Academy of Sciences, subject no. 0226-2019-0067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhamaletdinov.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhamaletdinov, A.A. Fiftieth Anniversary of the Kola SG-3 Superdeep Borehole. Izv. Atmos. Ocean. Phys. 56, 1401–1422 (2020). https://doi.org/10.1134/S0001433820110110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820110110

Keywords:

Navigation