Skip to main content
Log in

Numerical study for unsteady Casson fluid flow with heat flux using a spectral collocation method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

There is a crucial necessity for enhancing the efficiency of the solution of problem describing the non-Newtonian fluid flow over a stretching sheet to improve proficient the mechanism of heat transfer in numerous practical applications. For this aim, an efficient spectral collocation method is implemented in this paper to present the numerical solution for the flow and heat transfer of a non-Newtonian Casson model together with the presence of viscous dissipation and variable heat flux, with reference herein to the slip velocity and the heat generation or absorption condition. The absence of the magnetic field phenomenon in some studies is an essential restriction in the processes of development for the energy-efficient heat transfer mechanism that is desired in numerous industrial applications. So, the magnetic field is implemented here for this Casson model. Industrially, this type of fluid can describe the flow of blood in an industrial artery, which can be polished by a material governing the blood flow. The spectral collocation method based on Chebyshev polynomials of the third kind is employed to solve the resulting system of ODEs which describes the problem. This scientific study encompasses many parameters such as unsteadiness parameter, slip velocity parameter, Casson parameter, local Eckert number, heat generation parameter, and the Prandtl number. From this study, it has been consummated that the Casson model is superior to others that are much used as the industrial fluid. Finally, the given results show that the spectral collocation method is an easy and efficient tool to investigate the solution for such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L J Crane Zeitschrift für angewandte Mathematik und Physik 21 645 (1970)

    Article  ADS  Google Scholar 

  2. P S Gupta and A S Gupta Can. J. Chem. Eng. 55 744 (1977)

    Article  Google Scholar 

  3. L J Grubka and K M Bobba ASME J. Heat Transf. 107 248 (1985)

    Article  Google Scholar 

  4. C K Chen and M Char J. Math. Anal. Appl. 35 568 (1988)

    Article  Google Scholar 

  5. M E Ali Warme Stoffubertrag 29 227 (1994)

    Article  ADS  Google Scholar 

  6. I Pop and T Na Mech. Res. Commun. 23 413 (1996)

    Article  Google Scholar 

  7. A M Megahed Can. J. Phys. 92 86 (2014)

    Article  ADS  Google Scholar 

  8. K Bhattacharyya, T Hayat and A Alsaedi ZAMM Z. Angew. Math. Mech. 94 522 (2014)

    Article  MathSciNet  Google Scholar 

  9. S Mukhopadhyay, P Ranjan De, K Bhattacharyya, and G C Layek Ain Shams Eng. J. 4 933 (2013)

    Article  Google Scholar 

  10. J Boyd, J M Buick and S Green, Phys. Fluids 19 93 (2007)

    Google Scholar 

  11. P A Thompson and S M Troian Nature 389 360 (1997)

    Article  ADS  Google Scholar 

  12. A M Megahed Eur. Phys. J. Plus 126 1 (2011)

    Article  Google Scholar 

  13. M Turkyilmazoglu Int. J. Therm. Sci. 50 2264 (2011)

    Article  Google Scholar 

  14. A M Megahed Rheologica Acta 51 841 (2012)

    Article  Google Scholar 

  15. B Ghanbari, Sunil Kumar and R Kumar .Chaos, Solitons Fractals 133, 109619 (2020)

    Article  MathSciNet  Google Scholar 

  16. Sunil Kumar, R Kumar, C Cattani and B Samet . Chaos, Solitons Fractals 135, 109811 (2020)

    Article  MathSciNet  Google Scholar 

  17. Sunil Kumar, A Kumar, B Samet, J F Gómez-Aguilar and M S Osman . Chaos, Solitons Fractals 141, 110321 (2020)

    Article  MathSciNet  Google Scholar 

  18. Sunil Kumar Appl. Math. Model. 38(13) 3154 (2014)

    Article  MathSciNet  Google Scholar 

  19. Sunil Kumar, K S Nisar, R Kumar, C Cattani and B Samet Math. Methods Appl. Sci. 43(7) 4460 (2020)

    MathSciNet  Google Scholar 

  20. Sunil Kumar, S Ghosh, B Samet, E Franc and D Goufo Math. Methods Appl. Sci. 43(9) 6062 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. A Alshabanat, M Jleli, Sunil Kumar and B Samet Front. Phys. 20 (2020)

  22. S Kumar and J F Gómez-Aguilar J. Appl. Comput. Mech. 6(4) 848 (2020)

    Google Scholar 

  23. H Safdari, Y E Aghdam, and J F Gómez-Aguilar Eng. Computers 15 1 (2020)

    Google Scholar 

  24. P Pandey, S Kumar, J F Gómez-Aguilarc and D Baleanu Chin. J. Phys. 68 483 (2020)

    Article  Google Scholar 

  25. N Bhangale, K B Kachhia and J F Gómez-Aguilar Eng. Computers 12 1 (2020)

    Google Scholar 

  26. K D Dwivedi, R S Das, J F Gomez-Aguilar Numer. Methods Partial Differ. Equ. (2020)

  27. J P Boyd Chebyshev and Fourier Spectral Methods (2nd Ed. Dover), New York, USA, (2000)

  28. M M Khader Commun. Nonlinear Sci. Numer. Simul. 16 2535 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. M M Khader and Mohammed, M Babatin Comput. Appl. Math. 33 543 (2014)

    Article  MathSciNet  Google Scholar 

  30. M M Khader Indian J. Phys. 94 253 (2020)

    Article  ADS  Google Scholar 

  31. M M Khader Indian J. Phys. 94(9) 1369 (2020)

    Article  ADS  Google Scholar 

  32. Y S Daniel, Z A Aziz, Z Ismail, A Bahar and F Salah Indian J. Phys. 94 195 (2020)

    Article  ADS  Google Scholar 

  33. M M Khader and K M Saad Int. J. Biomath. 11 1 (2018)

    Article  Google Scholar 

  34. M M Khader and K M Saad Eur. Phys. J. Plus 133 1 (2018)

    Article  Google Scholar 

  35. K M Saad, M M Khader, J F Gomez-Aguilar and Dumitru Baleanu Chaos 29 1 (2019)

    Article  Google Scholar 

  36. H Shahmohamadi Meccanica 47 1313 (2012)

    Article  MathSciNet  Google Scholar 

  37. M Mustafa, T Hayat, I Pop and A Hendi Zeitschrift für Naturforschung A 67 70 (2012)

    Article  ADS  Google Scholar 

  38. M A A Mahmoud Chem. Eng. Commun. 198 131 (2011)

    Article  Google Scholar 

  39. M A A Mahmoud and A M Megahed Braz. J. Phys. 47 512 (2017)

    Article  ADS  Google Scholar 

  40. I-C Liu, A M Megahed and H H Wang J. Appl. Mech. 80 041003 (2013)

    Article  Google Scholar 

  41. M A Snyder Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood Cliffs, N J (1966)

    MATH  Google Scholar 

  42. J C Mason and D C Handscomb Chebyshev Polynomials, Chapman and Hall, CRC, New York, NY, Boca Raton, (2003)

    MATH  Google Scholar 

  43. M M Khader and K M Saad Chaos, Solitons & Fractals 110, 169 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. C Y Handan .J. of Eng. Technol. Appl. Sci. 28, 1 (2017)

    Google Scholar 

  45. S Sharidan, T Mahmood and I Pop Int. J. Appl. Mech. Eng. 11 647 (2006)

    Google Scholar 

  46. A J Chamkha, A M Aly and M A Mansour Chem. Eng. Commun. 197 846 (2010)

    Article  Google Scholar 

  47. S Mukhopadhyay Chin. Phys. B 22 114702 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the Deanship of Academic Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA, for the financial support of the project number (18-11-12-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khader, M.M. Numerical study for unsteady Casson fluid flow with heat flux using a spectral collocation method. Indian J Phys 96, 777–786 (2022). https://doi.org/10.1007/s12648-021-02025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02025-0

Keywords

Navigation