Skip to main content
Log in

Role of IL-9, IL-2RA, and IL-2RB genetic polymorphisms in coronary heart disease

Bedeutung der genetischen Polymorphismen IL-9, IL-2RA und IL-2RB bei koronarer Herzkrankheit

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Coronary heart disease (CHD) is one of the leading causes of disability and death worldwide. Inflammatory cytokines play an essential role in the pathogenesis of CHD. This study aimed to detect the potential association between interleukin (IL)-9, IL-2RA, and IL-2RB variants and CHD in a Han Chinese population.

Methods

This case–control study included 499 CHD patients and 496 healthy controls. Seven single-nucleotide polymorphisms (SNPs) were genotyped to investigate the possible association between the polymorphisms and CHD risk. Interactions between SNPs and CHD risk were analyzed via multifactor dimensionality reduction (MDR).

Results

We observed an association between IL‑9 rs55692658 (OR = 1.72, p = 0.003) and increased CHD risk. Age-stratified analysis indicated that regardless of the participantsʼ age, IL‑9 rs55692658 and IL-2RB rs1573673 contributed significantly to CHD susceptibility (p < 0.05, respectively). Results showed an association between IL‑9 rs55692658 and an increased risk for CHD (OR = 2.32, p = 0.003), while IL-2RA rs12722498 was correlated with decreased susceptibility to CHD (OR = 0.54, p = 0.033) in female patients. Furthermore, IL-2RA rs12569923 was related to diabetes risk in CHD patients (OR = 1.50, p = 0.028). The MDR analysis revealed a positive interaction between the SNPs.

Conclusion

The present study demonstrated that IL‑9 rs55692658, IL-2RA rs12569923, IL-2RA rs12722498, and IL-2RB rs3218264 polymorphisms might be related to CHD. The results require validation in larger studies.

Zusammenfassung

Hintergrund

Bei der koronaren Herzkrankheit (KHK) handelt es sich um eine der führenden Ursachen von Behinderung und Tod weltweit. Inflammatorische Zytokine spielen eine essenzielle Rolle in der Pathogenese der KHK. Ziel der vorliegenden Studie war es, den potenziellen Zusammenhang zwischen Varianten von Interleukin (IL)-9, IL-2RA sowie IL-2RB und KHK in einer Population von Han-Chinesen zu untersuchen.

Methoden

Diese Fall-Kontroll-Studie bezog 499-KHK-Patienten und 496 gesunde Kontrollen ein. Eine Genotypisierung erfolgte bei 7 ausgewählten Einzelnukleotidpolymorphismen (SNPs), um eine mögliche Assoziation zwischen den Polymorphismen und dem KHK-Risiko zu ermitteln. Wechselwirkungen zwischen SNPs und KHK-Risiko wurden mittels Multifactor Dimensionality Reduction (MDR) analysiert.

Ergebnisse

Die Autoren stellten einen Zusammenhang zwischen IL-9-rs55692658 (Odds Ratio, OR = 1,72; p = 0,003) und einem erhöhten KHK-Risiko fest. Eine altersstratifizierte Analyse ergab, dass unabhängig vom Alter des Studienteilnehmers IL‑9-rs55692658 und IL-2RB-rs1573673 in signifikanter Weise zur Anfälligkeit für eine KHK beitrugen (p < 0,05 jeweils). Die Ergebnisse zeigten eine Assoziation zwischen IL‑9-rs55692658 und einem erhöhten KHK-Risiko (OR = 2,32; p = 0,003), während IL-2RA-rs12722498 mit einer verminderten Anfälligkeit für eine KHK bei Patientinnen korreliert war (OR = 0,54; p = 0,033). Des Weiteren bestand eine Verknüpfung von IL-2RA-rs12569923 mit dem Diabetesrisiko bei KHK-Patienten (OR = 1,50; p = 0,028). Die MDR-Analyse ergab eine positive Wechselwirkung zwischen den SNPs.

Schlussfolgerung

Die vorliegende Studie zeigte, dass die Polymorphismen IL‑9-rs55692658, IL-2RA-rs12569923, IL-2RA-rs12722498 und IL-2RB-rs3218264 mit KHK in Zusammenhang stehen könnten. Die Ergebnisse erfordern eine Validierung in größeren Studien

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Li H, Sun K, Zhao R et al (2018) Inflammatory biomarkers of coronary heart disease. Front Biosci 10:185–196

    Article  Google Scholar 

  2. Jokinen E (2015) Obesity and cardiovascular disease. Minerva Pediatr 67:25–32

    PubMed  CAS  Google Scholar 

  3. Mitrokhin V, Nikitin A, Brovkina O et al (2017) Association between interleukin-6/6R gene polymorphisms and coronary artery disease in Russian population: influence of interleukin-6/6R gene polymorphisms on inflammatory markers. J Inflamm Res 10:151–160

    Article  CAS  Google Scholar 

  4. Mirhafez SR, Zarifian A, Ebrahimi M et al (2015) Relationship between serum cytokine and growth factor concentrations and coronary artery disease. Clin Biochem 48:575–580

    Article  CAS  Google Scholar 

  5. Marenberg ME, Risch N, Berkman LF et al (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  Google Scholar 

  6. Sjögren M, Almgren P, Melander O (2019) Polygenetic risk for coronary artery disease increases hospitalization burden and mortality. Int J Cardiol Heart Vasc 24:100391

    PubMed  PubMed Central  Google Scholar 

  7. Rojas-Zuleta WG, Sanchez E (2017) IL-9: Function, Sources, and Detection. Methods Mol Biol 1585:21–35

    Article  CAS  Google Scholar 

  8. Soussi-Gounni A, Kontolemos M, Hamid Q (2001) Role of IL‑9 in the pathophysiology of allergic diseases. J Allergy Clin Immunol 107:575–582

    Article  CAS  Google Scholar 

  9. Abdelilah S, Latifa K, Esra N et al (2001) Functional expression of IL‑9 receptor by human neutrophils from asthmatic donors: role in IL‑8 release. J Immunol 166:2768–2774

    Article  CAS  Google Scholar 

  10. Cappuzzello C, Di Vito L, Melchionna R et al (2011) Increase of plasma IL‑9 and decrease of plasma IL‑5, IL‑7, and IFN‑γ in patients with chronic heart failure. J Transl Med 9:28

    Article  CAS  Google Scholar 

  11. Singh TP, Schön MP, Wallbrecht K et al (2013) Involvement of IL‑9 in Th17-associated inflammation and angiogenesis of psoriasis. Plos One 8:e51752

    Article  CAS  Google Scholar 

  12. Koch S, Sopel N, Finotto S (2017) Th9 and other IL-9-producing cells in allergic asthma. Semin Immunopathol 39:55–68

    Article  CAS  Google Scholar 

  13. Zhang W, Tang T, Nie D et al (2015) IL‑9 aggravates the development of atherosclerosis in ApoE-/-mice. Cardiovasc Res 106:453–464

    Article  CAS  Google Scholar 

  14. Gregersen I, Skjelland M, Holm S et al (2013) Increased systemic and local interleukin 9 levels in patients with carotid and coronary atherosclerosis. Plos One 8:e72769

    Article  CAS  Google Scholar 

  15. Min X, Lu M, Tu S et al (2017) Serum cytokine profile in relation to the severity of coronary artery disease. Biomed Res Int 2017:4013685

    PubMed  PubMed Central  Google Scholar 

  16. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008

    Article  CAS  Google Scholar 

  17. Ruyssen-Witrand A, Lukas C, Nigon D et al (2014) Association of IL-2RA and IL-2RB genes with erosive status in early rheumatoid arthritis patients (ESPOIR and RMP cohorts). Joint Bone Spine 81:228–234

    Article  CAS  Google Scholar 

  18. Sharfe N, Dadi HK, Shahar M et al (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin‑2 receptor. Proc Natl Acad Sci USA 94:3168–3171

    Article  CAS  Google Scholar 

  19. Willerford DM, Chen J, Ferry JA et al (1995) Interleukin‑2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521–530

    Article  CAS  Google Scholar 

  20. Sakamoto A, Ishizaka N, Saito K et al (2012) Serum levels of IgG4 and soluble interleukin‑2 receptor in patients with coronary artery disease. Clin Chim Acta 413:577–581

    Article  CAS  Google Scholar 

  21. Simon AD, Yazdani S, Wang W et al (2001) Elevated plasma levels of interleukin‑2 and soluble IL‑2 receptor in ischemic heart disease. Clin Cardiol 24:253–256

    Article  CAS  Google Scholar 

  22. Wadwa RP, Kinney GL, Ogden L et al (2006) Soluble interleukin‑2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. Int J Biochem Cell Biol 38:996–1003

    Article  CAS  Google Scholar 

  23. Ding R, Gao W, Ostrodci DH et al (2013) Effect of interleukin‑2 level and genetic variants on coronary artery disease. Inflammation 36:1225–1231

    Article  CAS  Google Scholar 

  24. Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Glob Heart 7:275–295

    Article  Google Scholar 

  25. Hoffman TW, van Moorsel CHM, Borie R et al (2018) Pulmonary phenotypes associated with genetic variation in telomere-related genes. Curr Opin Pulm Med 24:269–280

    Article  CAS  Google Scholar 

  26. Lin Y, Xue Y, Huang X et al (2018) Association between interleukin-35 polymorphisms and coronary heart disease in the Chinese Zhuang population: a case-control study. Coron Artery Dis 29:423–428

    Article  Google Scholar 

  27. Leem S, Park T (2017) An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics 18:115

    Article  CAS  Google Scholar 

  28. Wu MY, Li CJ, Hou MF et al (2017) New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms18102034

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kirbis S, Breskvar UD, Sabovic M et al (2010) Inflammation markers in patients with coronary artery disease—comparison of intracoronary and systemic levels. Wien Klin Wochenschr 122(Suppl 2):31–34

    Article  CAS  Google Scholar 

  30. Sun W, Han Y, Yang S et al (2020) The assessment of Interleukin-18 on the risk of coronary heart disease. Med Chem 16:626–634

    Article  CAS  Google Scholar 

  31. Zhang T, Wang Z, Xiao W (2017) A meta-analysis of interleukin-6-572G〉C polymorphism and coronary heart disease susceptibility. Cardiol J 24:107–110

    Article  Google Scholar 

  32. Gerlach K, Weigmann B (2019) The dichotomous function of interleukin‑9 in cancer diseases. J Mol Med 97:1377–1383

    Article  CAS  Google Scholar 

  33. Khamis RY, Ammari T, Mikhail GW (2016) Gender differences in coronary heart disease. Heart 102:1142–1149

    Article  CAS  Google Scholar 

  34. Rizos I, Tsiodras S, Rigopoulos AG et al (2007) Interleukin‑2 serum levels variations in recent onset atrial fibrillation are related with cardioversion outcome. Cytokine 40:157–164

    Article  CAS  Google Scholar 

  35. Liao W, Lin JX, Leonard WJ (2011) IL‑2 family cytokines: new insights into the complex roles of IL‑2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 23:598–604

    Article  CAS  Google Scholar 

  36. Azenabor AA, Hoffman-Goetz L (2001) 17 beta-estradiol increases Ca(2+) influx and down regulates interleukin‑2 receptor in mouse thymocytes. Biochem Biophys Res Commun 281:277–281

    Article  CAS  Google Scholar 

  37. McMurray RW, Ndebele K, Hardy KJ et al (2001) 17-beta-estradiol suppresses IL‑2 and IL‑2 receptor. Cytokine 14:324–333

    Article  CAS  Google Scholar 

  38. Vedin O, Hagström E, Östlund O et al (2017) Associations between tooth loss and prognostic biomarkers and the risk for cardiovascular events in patients with stable coronary heart disease. Int J Cardiol 245:271–276

    Article  Google Scholar 

  39. Reunanen A, Takkunen H, Knekt P et al (1982) Hyperuricemia as a risk factor for cardiovascular mortality. Acta Med Scand Suppl 668:49–59

    PubMed  CAS  Google Scholar 

  40. Zhao XC, Yang SH, Yan YQ et al (2018) Identification of differential gene expression profile from peripheral blood cells of military pilots with hypertension by RNA sequencing analysis. BMC Med Genomics 11:59

    Article  CAS  Google Scholar 

  41. Motsinger AA, Ritchie MD, Shafer RW et al (2006) Multilocus genetic interactions and response to efavirenz-containing regimens: an adult AIDS clinical trials group study. Pharmacogenet Genomics 16:837–845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the participants in this study. Furthermore, we are grateful to the clinicians and staff of the Second Affiliated Hospital of Hainan Medical University, as well as the contributors to this study.

Author information

Authors and Affiliations

Authors

Contributions

Xianghong Chen drafted the manuscript. Xingfan Wang and Zaozhang Zhang performed the DNA extraction and genotyping; Yuewu Chen and Xingfan Wang performed the data analysis; Zaozhang Zhang and Yuewu Chen performed the sample collection and information recording; Xianghong Chen and Chao Wang conceived and supervised the study.

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Conflict of interest

Xianghong Chen, Xingfan Wang, Zaozhang Zhang, Yuewu Chen and Chao Wang declare that they have no competing interests.

This study adhered to the World Medical Association Declaration of Helsinki, and was also approved by the Ethics Committee of the Second Affiliated Hospital of Hainan Medical University. Written informed consent was obtained from each study participant.

Additional information

The authors Xianghong Chen, Xingfan Wang, and Zaozhang Zhang contributed equally to the manuscript.

Caption Electronic Supplementary Material

59_2020_5004_MOESM1_ESM.docx

Supplementary Table 1: Relationships between the SNPs of IL-2RA and IL-2RB and CHD risk; Supplementary Table 2: The SNPs of IL-2RA or IL-2RB associated with CHD risk in the age and gender subgroup tests; Supplementary Table 3: A list of SNPs associated with CHD in the subgroup tests (hypertension vs. non-hypertension and diabetes vs. non-diabetes); Supplementary Table 4: Haplotype frequencies in IL-2RA rs12569923|rs791588 and their association with CHD; Supplementary Figure 1: LD plots of three SNPs in the IL-2RA gene. The number in the diamond indicates the D’ value of pairwise LD between SNPs

59_2020_5004_MOESM2_ESM.tif

Supplementary Figure 1. LD plots of three SNPs in the IL-2RA gene. The number in the diamond indicates the D’ value of pairwise LD between SNPs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, X., Zhang, Z. et al. Role of IL-9, IL-2RA, and IL-2RB genetic polymorphisms in coronary heart disease. Herz 46, 558–566 (2021). https://doi.org/10.1007/s00059-020-05004-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-05004-z

Keywords

Schlüsselwörter

Navigation