Skip to main content
Log in

The facile synthesis of aerogel-like alumina highly-loaded with gold nanoparticles

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

A facile approach is proposed for the stabilization of gold nanoparticles within alumina matrix based on fast coprecipitation of colloidal gold and alumina sol in the supercritical carbon dioxide used as antisolvent. Acetylacetone was used as a stabilizer agent for the synthesis of alumina sol. Gold nanoparticles were synthesized from HAuCl4 directly in liquid alumina sol in reaction with acetylacetone. Acetylacetone played the role of both a stabilizer agent for gold nanoparticles and a reducing agent. Obtained system is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared (IR) spectroscopy, and UV–Vis adsorption spectroscopy. The method allows us to synthesize aerogel-like alumina highly loaded with gold nanoparticles firmly fixed on oxide surface and uniformly distributed within alumina matrix. The proposed approach combines sol-gel and supercritical fluid methods for the synthesis and opens the wide prospects for preparation composites consisting of gold nanoparticles in oxide matrix with a uniform distribution. These gold-bearing systems may be of interest to a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi X, Yao Y, Xu Y, Liu K, Zhu G, Chi L, Lu G (2017) Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl Mater Interfaces 9:7481–7488. https://doi.org/10.1021/acsami.6b16267

    Article  CAS  Google Scholar 

  2. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chemie Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  3. D’Amato CA, Giovannetti R, Zannotti M et al (2018) Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO 2 for dye degradation in water solution. Appl Surf Sci 441:575–587. https://doi.org/10.1016/j.apsusc.2018.01.290

    Article  CAS  Google Scholar 

  4. Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Gold-nanoparticle-doped TiO2 semiconductor thin films: optical characterization. Adv Funct Mater 17:347–354. https://doi.org/10.1002/adfm.200600349

    Article  CAS  Google Scholar 

  5. De Julián FC, Manera MG, Spadavecchia J et al (2005) Study of the gas optical sensing properties of Au-polyimide nanocomposite films prepared by ion implantation. Sensors Actuators, B Chem 111–112:225–229. https://doi.org/10.1016/j.snb.2005.07.042

    Article  CAS  Google Scholar 

  6. Enache DI, Edwards JK, Landon P, et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using. Science (80- ) 311:362–366. https://doi.org/10.1126/science.1120560

  7. Hutchings GJ, Hall MS, Carley AF et al (2006) Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J Catal 242:71–81. https://doi.org/10.1016/j.jcat.2006.06.001

    Article  CAS  Google Scholar 

  8. Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: results of research activity at the Boreskov Institute of Catalysis. Catal Today 144:292–305. https://doi.org/10.1016/j.cattod.2008.10.038

    Article  CAS  Google Scholar 

  9. He Q, Miedziak PJ, Kesavan L, Dimitratos N, Sankar M, Lopez-Sanchez JA, Forde MM, Edwards JK, Knight DW, Taylor SH, Kiely CJ, Hutchings GJ (2013) Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discuss 162:365–378. https://doi.org/10.1039/c2fd20153d

    Article  CAS  Google Scholar 

  10. Miedziak PJ, Tang Z, Davies TE, Enache DI, Bartley JK, Carley AF, Herzing AA, Kiely CJ, Taylor SH, Hutchings GJ (2009) Ceria prepared using supercritical antisolvent precipitation: a green support for gold–palladium nanoparticles for the selective catalytic oxidation of alcohols. J Mater Chem 19:8619–8627. https://doi.org/10.1039/B911102F

    Article  CAS  Google Scholar 

  11. Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Serpil Kislalioglu M (2012) Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv 9:269–284. https://doi.org/10.2174/156720112800389052

    Article  CAS  Google Scholar 

  12. Shalygin AS, Kozhevnikov IV, Gerasimov EY, Andreev AS, Lapina OB, Martyanov ON (2017) The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous Mesoporous Mater 251:105–113. https://doi.org/10.1016/j.micromeso.2017.05.053

    Article  CAS  Google Scholar 

  13. Shalygin AS, Katcin AA, Barnyakov AY, Danilyuk AF, Martyanov ON (2020) Dependence of the refractive index of transparent ZrO2–SiO2 aerogels on the density and zirconium content. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.12.093

  14. Shalygin AS, Nuzhdin AL, Bukhtiyarova GA, Martyanov ON (2017) Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis. J Sol-Gel Sci Technol 84:446–452. https://doi.org/10.1007/s10971-017-4455-3

    Article  CAS  Google Scholar 

  15. Polevaya V, Vorobei A, Gavrikov A, Matson S, Parenago O, Shishatskiy S, Khotimskiy V (2020) Modification of poly(4-methyl-2-pentyne) in the supercritical fluid medium for selective membrane separation of CO2 from various gas mixtures. Polymers (Basel) 12:2468. https://doi.org/10.3390/polym12112468

    Article  CAS  Google Scholar 

  16. Nuzhdin AL, Shalygin AS, Artiukha EA, Chibiryaev AM, Bukhtiyarova GA, Martyanov ON (2016) HKUST-1 silica aerogel composites: novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography. RSC Adv 6:62501–62507. https://doi.org/10.1039/C6RA06522H

    Article  CAS  Google Scholar 

  17. Hutchings GJ (2009) Catalyst synthesis using supercritical carbon dioxide: a green route to high activity materials. Top Catal 52:982–987. https://doi.org/10.1007/s11244-009-9248-7

    Article  CAS  Google Scholar 

  18. Kondrat SA, Smith PJ, Wells PP, Chater PA, Carter JH, Morgan DJ, Fiordaliso EM, Wagner JB, Davies TE, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Rosseinsky MJ, Hutchings GJ (2016) Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531:83–87. https://doi.org/10.1038/nature16935

    Article  CAS  Google Scholar 

  19. Smith PJ, Kondrat SA, Carter JH, Chater PA, Bartley JK, Taylor SH, Spencer MS, Hutchings GJ (2017) Supercritical antisolvent precipitation of amorphous copper-zinc georgeite and acetate precursors for the preparation of ambient-pressure water-gas-shift copper/zinc oxide catalysts. ChemCatChem 9:1621–1631. https://doi.org/10.1002/cctc.201601603

    Article  CAS  Google Scholar 

  20. Franco S, Marco D, Vaiano (2019) Zinc oxide nanoparticles obtained by supercritical antisolvent precipitation for the photocatalytic degradation of crystal violet dye. Catalysts 9:346. https://doi.org/10.3390/catal9040346

    Article  CAS  Google Scholar 

  21. Da Silva EP, Winkler MEG, Giufrida WM et al (2019) Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. J Colloid Interface Sci 535:245–254. https://doi.org/10.1016/j.jcis.2018.09.098

    Article  CAS  Google Scholar 

  22. Marin RP, Ishikawa S, Bahruji H, Shaw G, Kondrat SA, Miedziak PJ, Morgan DJ, Taylor SH, Bartley JK, Edwards JK, Bowker M, Ueda W, Hutchings GJ (2015) Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Appl Catal A Gen 504:62–73. https://doi.org/10.1016/j.apcata.2015.02.023

    Article  CAS  Google Scholar 

  23. Nesterov NS, Shalygin AS, Pakharukova VP, Glazneva TS, Martyanov ON (2019) Mesoporous aerogel-like Al-Si oxides obtained via supercritical antisolvent precipitation of alumina and silica sols. J Supercrit Fluids 149:110–119. https://doi.org/10.1016/J.SUPFLU.2019.03.014

    Article  CAS  Google Scholar 

  24. Nesterov NS, Shalygin AS, Pakharukova VP, Martyanov ON (2019) Coprecipitation of Au clusters and alumina sol in supercritical CO2—the facile way to stabilize gold nanoparticles within oxide matrix. J Sol-Gel Sci Technol 92:523–528. https://doi.org/10.1007/s10971-019-05137-6

    Article  CAS  Google Scholar 

  25. Nesterov NS, Paharukova VP, Yakovlev VA, Martyanov ON (2016) The facile synthesis of Ni–Cu catalysts stabilized in SiO2 framework via a supercritical antisolvent approach. J Supercrit Fluids 112:119–127. https://doi.org/10.1016/j.supflu.2016.03.003

    Article  CAS  Google Scholar 

  26. Nesterov NS, Pakharukova VP, Martyanov ON (2017) Water as a cosolvent – effective tool to avoid phase separation in bimetallic Ni-Cu catalysts obtained via supercritical antisolvent approach. J Supercrit Fluids 130:133–139. https://doi.org/10.1016/j.supflu.2017.08.002

    Article  CAS  Google Scholar 

  27. Nesterov NS, Smirnov AA, Pakharukova VP, Yakovlev VA, Martyanov ON (2020) Advanced green approaches for the synthesis of NiCu-containing catalysts for the hydrodeoxygenation of anisole. Catal Today. https://doi.org/10.1016/j.cattod.2020.09.006

  28. De G, Bhattacharyya S (2008) Au nanoparticles in alumina sols and coatings. J Mater Chem 18:2816. https://doi.org/10.1039/b802156b

    Article  CAS  Google Scholar 

  29. France J, Hollins P (1993) Interactions of CO molecules adsorbed on gold. J Electron Spectros Relat Phenomena 64–65:251–258. https://doi.org/10.1016/0368-2048(93)80086-2

    Article  Google Scholar 

  30. Mihaylov M, Gates BC, Fierro-Gonzalez JC, Hadjiivanov K, Knözinger H (2007) Redox behavior of gold species in zeolite NaY: characterization by infrared spectroscopy of adsorbed CO. J Phys Chem C 111:2548–2556. https://doi.org/10.1021/jp066005l

    Article  CAS  Google Scholar 

  31. Venkov T, Klimev H, Centeno MA, Odriozola JA, Hadjiivanov K (2006) State of gold on an Au/Al2O3 catalyst subjected to different pre-treatments: an FTIR study. Catal Commun 7:308–313. https://doi.org/10.1016/j.catcom.2005.11.018

    Article  CAS  Google Scholar 

  32. Boccuzzi F, Chiorino A, Manzoli M (2000) FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surf Sci 454–456:942–946. https://doi.org/10.1016/S0039-6028(00)00160-6

    Article  Google Scholar 

  33. Kul’ko EV, Ivanova AS, Budneva AA, Paukshtis EA (2005) Acid-base properties of single-phase aluminum oxides. Kinet Catal 46:132–137. https://doi.org/10.1007/s10975-005-0020-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project АААА-А21-121011390053-4) and the Russian Foundation for Basic Research (project 18-29-06022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nesterov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, N.S., Shalygin, A.S., Glazneva, T.S. et al. The facile synthesis of aerogel-like alumina highly-loaded with gold nanoparticles. Gold Bull 54, 69–74 (2021). https://doi.org/10.1007/s13404-021-00294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00294-5

Keywords

Navigation