Skip to main content
Log in

Lead in Soils of the Selenga River Delta

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Distribution of total and acid-soluble lead in five major soil types and soil-forming rocks have been studied in the Selenga River delta, the largest affluent of Lake Baikal. A low content of this element in soil-forming rocks (6.0 mg/kg on the average) along with the local soil-geochemical conditions is responsible for its small amount in soils. The bulk lead content in the topsoil (0–20 cm) layer varies from 3 to 17 mg/kg (the mean is 10 mg/kg), which is lower than the maximum permissible concentration and the natural abundance (clarke) of lead in soils of the world. The lead content in swampy and soddy alluvial soils is two times higher than in meadow alluvial and gray forest soils and in sands under pine forests. Differences in the lead content in soils on the left and right banks of the Selenga River delta have been revealed. The content of acid-soluble lead varies within 24–68% of the total lead content in alluvial swampy and alluvial meadow soils, within 15–43% in alluvial soddy soils, and within 11–26% in gray forest soils and sands under pine forest. The distribution pattern of lead in the vertical soil profile is eluvial–illuvial in alluvial swampy and alluvial meadow soils and sands under pine forest and accumulative–eluvial–illuvial in soddy alluvial and gray forest soils. Lead accumulation in the organic and gley horizons of alluvial swampy and alluvial meadow soils is revealed. In alluvial soddy and gray forest soils with relatively uniform particle-size and mineralogical composition, lead is evenly distributed in the soil profile with a particular accumulation in the top sod layer. The dependence on soil properties is slight for the total lead content and is somewhat stronger for acid-soluble lead. The data obtained may be used for biogeochemical monitoring in the Baikal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. A. Avessalomova, Geochemical Indices for Study of Landscapes (Moscow State Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  2. Agrochemical Analysis of Soils (Nauka, Moscow, 1975) [in Russian].

  3. Atlas of Transbaikalia. Buryat ASSR and Chita Oblast, Ed. by V. B. Sochava (General Office of Geodesy and Cartography, Irkutsk, 1967) [in Russian].

    Google Scholar 

  4. I. Bertini, H. B. Gray, E. Stiefel, and J. Valentine, Biological Inorganic Chemistry: Structure and Reactivity (University Science Books, Sausalito, CA, 2007; BINOM. Laboratoriya Znanii, Moscow, 2013).

  5. G. S. Boldyrev, Sedimentation and Quaternary History of the Baikal Lake Basin (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  6. A. V. Bukin, Candidate’s Dissertation in Biology (Tyumen, 2012).

  7. Yu. N. Vodyanitskii, A. A. Vasil’ev, and A. V. Kozheva, “Heavy metals in alluvial soils of the Central Cis-Ural region,” Dokl. Ross. Akad. S-kh. Nauk, No. 5, 23–25 (2004).

    Google Scholar 

  8. S. E. Golovatyi, S. V. Savchenko, and E. A. Samusik, “Cadmium, zinc, and lead in soils in the area affected by industrial emissions,” Zh. Bel. Gos. Univ., Ekol., No. 4, 70–80 (2017).

  9. State Report “On the Environmental State and Protection of Lake Baikal in 2015” (Ministry of Natural Resources and Environment of the Russian Federation, Moscow, 2016) [in Russian]. http://www.mnr.gov.ru.

  10. N.A. Grigor’ev, “Average concentrations of chemical elements in rocks of the upper continental crust,” Geochem. Int. 41, 711–718 (2003).

    Google Scholar 

  11. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984; Binom, Moscow, 2008).

  12. A. B. Gyninova, S. A. Shoba, L. D. Balsanova, and B. D. Gyninova, Soils of the Selenga River Delta: Genesis, Geography, and Geochemistry (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2012) [in Russian].

  13. The Selenga River Delta as a Natural Biological Filter and Environmental Indicator of the Baikal Lake, Ed. by A. K. Tulokhonov and A. M. Plyusnin (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  14. Elsaied Said Mokhamed, Goma Botkhina Saad Mokhammed Ali, and A. V. Shuravilin, “Heavy metal pollution of soils in the eastern part of the Nile delta,” Dokl. Ross. Akad. S-kh. Nauk, No. 5, 44–48 (2014).

    Google Scholar 

  15. V. V. Ivanov, Ecological Biochemistry of the Elements: Handbook (Nedra, Moscow, 1996), Book 3.

  16. G. M. Ivanov, Trace Elements–Biophilous Components in Transbaikal Landscapes (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2007) [in Russian].

  17. L. A. Izerskaya and T. E. Vorob’eva, “Heavy metal compounds in alluvial soils of the middle Ob Valley,” Eurasian Soil Sci. 33, 49–55 (2000).

    Google Scholar 

  18. V. B. Il’in, “Heavy metals in soils of Western Siberia,” Pochvovedenie, No. 11, 87–94 (1987).

    Google Scholar 

  19. V. B. Il’in, A. I. Syso, G. A. Konarbaeva, N. L. Baidina, and A. S. Cherevko, “Heavy metal contents of soil-forming rocks in the south of Western Siberia,” Eurasian Soil Sci. 33, 950–953 (2000).

    Google Scholar 

  20. V. B. Il’in, Heavy Metals and Non-Metals in the Soil–Plant System (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2012) [in Russian].

  21. E. A. Il’icheva, L. M. Korytnyi, and M. V. Pavlov, “Modern channel network of the Selenga River delta,” Vestn. Tomsk. Gos. Univ., No. 380, 190–194 (2014).

  22. A. B. Imetkhenov, Late Cenozoic Deposits on the Coasts of Lake Baikal (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  23. M. M. Karpukhin and D. V. Ladonin, “Effect of soil components on the adsorption of heavy metals under technogenic contamination,” Eurasian Soil Sci. 41, 1228–1237 (2008).

    Article  Google Scholar 

  24. N. S. Kasimov, M. Yu. Lychagin, S. R. Chalov, G. L. Shinkareva, M. P. Pashkina, A. O. Romanchenko, and E. V. Promakhova, “Basin analysis of the matter flows in the Selenga–Baikal system,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 69–83 (2016). https:// r-ucont.ru/efd/501276.

  25. V. K. Kashin, “Lead in the abiotic components and vegetation of Transbaikalian landscapes,” Geochem. Int. 40, 717–722 (2002).

    Google Scholar 

  26. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  27. D. V. Ladonin, “Impact of technogenic pollution on the fractional composition of copper and zinc in soils,” Pochvovedenie, No. 10, 1299–1305 (1995).

    Google Scholar 

  28. D. V. Ladonin, “Fractional–isotopic composition of lead compounds in soils of the Kologrivskii Forest Reserve,” Eurasian Soil Sci. 51, 929–937 (2018).

    Article  Google Scholar 

  29. Landscape-Geochemical Features of Trace Element Deficits in Middle-Taiga Zone of Yakutia, Ed. by D. D. Savvinov (Nedra–Bizness Tsentr, Moscow, 2006) [in Russian].

    Google Scholar 

  30. D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, M. M. Karpukhin, Yu. A. Zavgorodnyaya, and O. B. Tsvetnova, “Distributions of heavy metals and benzo[a]pyrene in oligotrophic peat soils and peat gleyzems of Northeastern Sakhalin,” Eurasian Soil Sci. 51, 518–527 (2018).

    Article  Google Scholar 

  31. T. M. Minkina, A. A. Statovoi, and V. S. Kryshchenko, “Mechanisms of lead sorption by granulometric fractions of ordinary chernozem,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 4, 66–69 (2004).

    Google Scholar 

  32. T. M. Minkina, Yu. A. Fedorov, D. G. Nevidomskaya, S. S. Mandzhieva, and M. N. Kozlova, “Specific features of the contents and mobility of heavy metals in soils of floodplain of the Don River,” Arid Ecosyst. 6, 70–79 (2016).

    Article  Google Scholar 

  33. N. P. Nevedrov, E. P. Protsenko, and I. V. Glebova, “The relationship between bulk and mobile forms of heavy metals in soils of Kursk,” Eurasian Soil Sci. 51, 112–119 (2018).

    Article  Google Scholar 

  34. M. G. Opekunova, A. Yu. Opekunov, S. Yu. Kukushkin, and A. G. Ganul, “Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia,” Eurasian Soil Sci. 52, 380–395 (2019).

    Article  Google Scholar 

  35. D. S. Orlov, L. K. Sadovnikova, and N. I. Sukhanova, Soil Chemistry (Vysshaya Shkola, Moscow, 2005) [in Russian].

    Google Scholar 

  36. The Report on Scientific-Research Work “Assessment of the State and Pollution Degree of Soils in Buryatia According to Reconnaissance Expedition Survey in 2014” (Obninsk, 2015) [in Russian].

  37. T. V. Pampura, M. Meili, K. Holm, F. Candaudap, and A. Probst, “Buried paleosols as reference objects for assessing the current level of soil pollution with lead in the Lower Volga steppes,” Eurasian Soil Sci. 52, 34–49 (2019).

    Article  Google Scholar 

  38. A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscapes (Moscow State Univ., Moscow, 1999) [in Russian].

    Google Scholar 

  39. A. A. Ponizovskii and E. V. Mironenko, “Mechanisms of lead(II) sorption in soils,” Eurasian Soil Sci. 34, 371–381 (2001).

    Google Scholar 

  40. T. G. Potemkina, “Distribution of water and sediment runoff in the Selenga River delta channels,” Geogr. Prirod. Resur., No. 1, 75–78 (1995).

  41. V. I. Savich, Use of Variation Statistics in Soil Science (Moscow, 1972) [in Russian].

    Google Scholar 

  42. V. N. Savos’ko, Heavy Metals in Soils of Krivoy Rog Iron Ore Basin (Dionat, Krivoi Rog, 2016) [in Russian].

    Google Scholar 

  43. L. K. Sadovnikova and D. V. Ladonin, “Analysis of zinc compounds in background and polluted soils,” in Physical and Chemical Studies of Soils (Moscow State Univ., Moscow, 1994), pp. 130–141.

    Google Scholar 

  44. I. A. Samofalova, Chemical Composition of Soils and Soil-Forming Rocks (Perm, 2009) [in Russian].

    Google Scholar 

  45. A. Z. Sibirkina, “The content of heavy metals in sands of the pine forest of the Semipalatinsk Irtysh region of the Republic of Kazakhstan,” Vestn. Voronezh. Gos. Univ., Ser. Khim., Biol., Farm., No. 2, 46–52 (2011).

  46. V. V. Snakin, “Lead in the biosphere,” Vestn. Ross. Akad. Nauk 68 (3), 214–224 (1998).

    Google Scholar 

  47. T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange (Grif i K, Tula, 2009) [in Russian].

    Google Scholar 

  48. S. B. Sosorova and V. K. Kashin, Heavy Metals in Soils and Plants of the Selenga River Delta (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2009) [in Russian].

  49. A. I. Syso, Distribution Pattern of Chemical Elements in Soil-Forming Rocks and Soils of Western Siberia (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2007) [in Russian].

  50. A. V. Khadanovich and V. G. Sviridenko, Environmental Chemistry. Natural Sorbents and Their Properties and Use (Gomel, 2005) [in Russian].

    Google Scholar 

  51. Z. I. Khazheeva, “The material composition of sediments in the Selenga River delta channels,” Gorn. Inf.-Anal. Byull., No. 5, 384–386 (2008).

  52. O. V. Chernova and O. V. Beketskaya, “Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements),” Eurasian Soil Sci. 44, 1008–1017 (2011).

    Article  Google Scholar 

  53. G. D. Chimitdorzhieva, A. Z. Nimbueva, and E. A. Bodeeva, “Heavy metals (copper, lead, nickel, and cadmium) in the organic part of gray forest soils in the Buryat Republic,” Eurasian Soil Sci. 45, 140–146 (2012).

    Article  Google Scholar 

  54. G. D. Chimitdorzhieva, E. A. Bodeeva, and A. Z. Nimbueva, “Lead in the system minerals–soil–humic substances–plants by the example of steppe and forest-steppe soils of Western Transbaikalia,” Sib. Ekol. Zh. 21 (3), 485–492 (2014).

    Google Scholar 

  55. S. M. Shaheen, J. Rinklebe, and C. D. Tsadilas, “Fractionation and mobilization of toxic elements in floodplain soils from Egypt, Germany, and Greece: a comparison study,” Eurasian Soil Sci. 48, 1317–1328 (2015).

    Article  Google Scholar 

  56. J. Bech, F. Reverter, P. Tume, L. Longan, J. Bech, and T. Oliver, “Pedogeochemical mapping of Al, Ba, Pb, Ti and V in surface soils of Barcelona Province (Catalonia, NE Spain): relationships with soil physicochemical properties,” J. Geochem. Explor. 109 (1–3), 26–37 (2011).

    Article  Google Scholar 

  57. H. B. Bradl, “Adsorption of heavy metal ions on soils and soils constituents,” J. Colloid Interface Sci. 277 (1), 1–18 (2004).

    Article  Google Scholar 

  58. E. F. Covelo, F. A. Vega, and M. L. Andrade, “Competitive sorption and desorption of heavy metals by individual soil components,” J. Hazard. Mater. 140 (1–2), 308–315 (2007).

    Article  Google Scholar 

  59. T. A. Elbana, H. Magdi Selim, N. Akrami, A. Newman, S. M. Shaheen, and J. Rinklebe, “Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: influence of kinetics,” Geoderma 324, 80–88 (2018).

    Article  Google Scholar 

  60. M. E. Essington, Soil and Water Chemistry (CRC Press, Boca Raton, 2004).

    Google Scholar 

  61. Health Risks of Heavy Metals from Long–Range Transboundary Air Pollution (World Health Organization Regional Office Europe, Copenhagen, 2007).

  62. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  63. A. Kabata, Trace Elements in Soils and Plants (CRC Press, Boca Raton, 2011).

    Google Scholar 

  64. R. Kõlli, E. Asi, V. Apuhtin, K. Kauer, and L. W. Szajdak, “Chemical properties of surface peat on forest land in Estonia,” Mires Peat 6 (6), (2010).

  65. J. Li, Z. Wu, W. Wu, S. L. Wang, G. L. Zhen, D. Chen, Y. Xie, N. K. Niazi, Y. S. Ok, J. Rinklebe, and H. Wang, “Sorption of lead in soil amended with coconut fiber biochar: geochemical and spectroscopic investigations,” Geoderma 350, 52–60 (2019).

    Article  Google Scholar 

  66. E. Mahmoudabadi, F. Sarmadian, and R. Nazary Moghaddam, “Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran),” Int. J. Environ. Sci. Technol. 12, 3283–3298 (2015). https://doi.org/10.1007/s13762-015-0808-z

    Article  Google Scholar 

  67. D. G. Strawn and D. L. Sparks, “Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and esorption in soil,” Soil Sci. Soc. Am. J. 64 (1), 144–156 (2000).

    Article  Google Scholar 

  68. H. Tian, C. Duan, L. Fang, Y. Wang, and H. Wu, “Dominant factor affecting Pb speciation and the leaching risk among land–use types around PB–ZN Mine,” Geoderma. 326, 123–132 (2018).

  69. Węgrzyn Michał, Wietrzyk Paulina, Lisowska Maja, Klimek Beata, and Nicia Paweł, “What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard?” Polar Sci. 10 (4), 532–540 (2016).

    Article  Google Scholar 

  70. www.sib-man.ru.

Download references

Funding

This work was performed according to state assignment no. AAAA-A17-117011810038-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Sosorova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosorova, S.B., Kashin, V.K. Lead in Soils of the Selenga River Delta. Eurasian Soil Sc. 54, 212–225 (2021). https://doi.org/10.1134/S1064229321020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321020149

Keywords:

Navigation