Skip to main content
Log in

Effects of Organic Amendments on Enzymes Activities in a Calcareous Sandy Soil

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This study was conducted to assess the impact of some organic amendments on enzyme activities and soil organic carbon (SOC) content of a Calcaric Regosol. The organic amendments included poultry manure compost (CM), sugarcane (Saccharum officinarum) bagasse biomass (SBB), and its biochar (SBBC). Chemical soil properties and some enzyme activities were analyzed after 2, 4, 8, and 12 months (M2, M4, M8, and M12, respectively) of soil incubation. Five treatments including Control soil, SBB, SBBC, CM, and the mixture of SBBC + CM in the ratio of 1 : 1 were considered. There were three levels of organic amendments: L1: 1.25%, L2: 2.5%, and L3: 5%. The results indicated a considerable increase in SOC content and enzyme activities following the addition of organic amendments to the soil. Both the SOC content and enzyme activities were impacted by the type of organic amendments, levels of input, and the duration of incubation (p < 0.001). Compared to the control (untreated soil), the activity of alkaline phosphatase significantly increased from 221.2 (CML1M2) to 1094% (SBBL3M12) and acid phosphatase activity varied from 108.2 (SBBCL3M2) to 1063% (SBBL3M12) in the treated soils. The CML3M12 treatment had the highest impact on β-glucosidase activity with a rise of 1256.5% in comparison with the control. Similarly, the SBBCL3M8 treatment led to the highest Invertase activity. Application of organic amendments would be considered as a guaranteed strategy of restoring and increasing SOC storage in calcareous sandy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. Acosta-Martínez, R. Lascano, F. Calderón, J. D. Booker, T. M. Zobeck, and R. Upchurch, “Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil,” Biol. Fertil. Soils 47, 655–667 (2011). https://doi.org/10.1007/s00374-011-0565-1

    Article  Google Scholar 

  2. G. Agegnehu, A. Srivastava, and M. I. Bird, “The role of biochar and biochar-compost in improving soil quality and crop performance: a review,” Appl. Soil Ecol. 119, 156–170 (2017). https://doi.org/10.1016/j.apsoil.2017.06.008

    Article  Google Scholar 

  3. K. Alef and P. Nannipieri, Methods in Applied Soil Microbiology and Biochemistry (Elsevier, Amsterdam, 1995). ISBN 9780080527482

    Google Scholar 

  4. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresour. Technol. 131, 374–379 (2013). .https://doi.org/10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  5. L. Baležentiené, “Hydrolases related to C and N cycles and soil fertility amendment: responses to different management styles and agro-ecosystems,” Pol. J. Environ. Stud. 21 (5), 1153–1159 (2012).

    Google Scholar 

  6. G. Bonanomi, F. Ippolito, G. Cesarano, B. Nanni, N. Lombardi, A. Rita, A. Saracino, and F. Scala, “Biochar as plant growth promoter: better off alone or mixed with organic amendments?,” Front. Plant Sci. 8, 1570 (2017). https://doi.org/10.3389/fpls.2017.01570

    Article  Google Scholar 

  7. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil,” Soil Biol. Biochem. 17, 837–842 (1985).

    Article  Google Scholar 

  8. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  9. D. Chapman, Dead Bird Composting: Final Report for Contract USDA-43-2D81–1-561,” Submitted to USDA/SCS through Soil Conservation Service, Department Animal and Dairy Sciences (Auburn, 2005).

    Google Scholar 

  10. N. Claoston, A. Samsuri, M. A. Husni, and M. M. Amran, “Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars,” Waste Manage. Res. 32 (4), 331–339 (2014). https://doi.org/10.1177/0734242X14525822

    Article  Google Scholar 

  11. J. C. Colazo and D. Buschiazzo, “The impact of agriculture on soil texture due to wind erosion,” Land Degrad. Dev. 26, 62–70 (2015). https://doi.org/10.5194/se-2016-65

    Article  Google Scholar 

  12. N. Dempster, B. Gleeson, M. Solaiman, L. Jones, and V. Murphy, “Decreased soil microbial biomass and nitrogen mineralization with eucalyptus biochar addition to a coarse textured soil,” Plant. Soil 354, 311–324 (2012).

    Article  Google Scholar 

  13. O. Dilly and J. C. Munch, “Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn.) forest,” Soil Biol. Biochem. 28, 1073–1081 (1996). https://doi.org/10.1016/0038-0717(96)00075-2

    Article  Google Scholar 

  14. F. Eivazi and M. A. Tabatabai, “Glucosidases and galactosidases in soils,” Soil Biol. Biochem. 20, 601–606 (1988). https://doi.org/10.1016/0038-0717(88)90141-1

    Article  Google Scholar 

  15. E. H. El-Gamal, M. Saleh, I. Elsokkary, M. Rashad, and M. A. El-Latif, “Comparison between properties of biochar produced by traditional and controlled pyrolysis,” Alexandria Sci. Exch. J. 38, 412–425 (2017).

    Article  Google Scholar 

  16. W. Fang, G. Qi, Y. Wei, D. S. Kosson, H. A. van der Sloot, and J. Liu, “Leaching characteristic of toxic trace elements in soils amended by sewage sludge compost: a comparison of field and laboratory investigations,” Environ. Pollut. 237, 244–252 (2018). https://doi.org/10.1016/j.envpol.2018.02.032

    Article  Google Scholar 

  17. E. Fekadu, K. Kibret, B. Bedadi, A. Melese, and B. Yitaferu, “Organic and inorganic amendments on soil chemical properties at different period of incubation on acidic soil,” Eurasian J Soil Sci. 7 (3), 273–283 (2018). https://doi.org/10.18393/ejss.435095

    Article  Google Scholar 

  18. G. Gee and W. Bauder, “Particle size analysis,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Agronomic Monograph vol. 9.1, Ed. by A. Klute, (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1986), pp. 388–409.

  19. J. Gomez, K. Denef, C. Stewart, J. Zheng, and M. Cotrufo, “Biochar addition rate influences soil microbial abundance and activity in temperate soils,” Eur. J. Soil Sci. 65 (1), 28–39 (2014). https://doi.org/10.1111/ejss.12097

    Article  Google Scholar 

  20. S. Hachicha, M. Chtourou, K. Medhioub, and E. Ammar, “Compost of poultry manure and olive mill wastes as an alternative fertilizer,” Agron. Sustainable Dev. 26 (2), 135–142 (2006). https://doi.org/10.1051/agro:2006005

    Article  Google Scholar 

  21. S. Joseph, C. I. Kammann, J. G. Shepherd, P. Conte, H.-P. Schmidt, N. Hagemann, A. M. Rich, C. E. Marjo, J. Allen, P. Munroe, D. R. G. Mitchell, S. Donne, K. Spokas, and E. R. Graber, “Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release,” Sci. Total Environ. 618, 1210–1223 (2017). .https://doi.org/10.1016/j.scitotenv.2017.09.200

    Article  Google Scholar 

  22. S. R. Joshi, G. D. Sharma, and R. R. Mishra, “Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of North East India,” Soil Biol. Biochem. 25, 1763–1770 (1993). https://doi.org/10.1016/0038-0717(93)90181-A

    Article  Google Scholar 

  23. H. H. Kayikçioğlu and N. Okur, “Evolution of enzyme activities during composting of tobacco waste,” Waste Manage. Res. 29 (11), 1124–1133 (2011). https://doi.org/10.1177/0734242X10392813

    Article  Google Scholar 

  24. C. L. Khodadad, A. R. Zimmerman, S. J. Green, S. Uthandi, and J. S. Foster, “Taxa specific changes in soil microbial community composition induced by pyrogenic carbon amendments,” Soil Biol. Biochem. 43, 385–392 (2011).

    Article  Google Scholar 

  25. J. Kjeldahl, “A new method for the determination of nitrogen in organic matter,” Z. Anal. Chem. 22, 366–382 (1883). https://doi.org/10.1007/BF01338151

    Article  Google Scholar 

  26. I. Körner, J. Braukmeier, J. Herrenklage, K. Leikam, M. Ritzkowski, M. Schlegelmilch, and R. Stegmann, “Investigation and optimization of composting processes—test systems and practical examples,” J. Waste Manage. 23 (1), 17–26 (2003).https://doi.org/10.1016/S0956-053X-(02)00148-4

  27. R. Lal, “Restoring soil quality to mitigate soil degradation,” Sustainability 7 (5), 5875–5895 (2015). https://doi.org/10.3390/su7055875

    Article  Google Scholar 

  28. C. Lammirato, A. Miltner, and M. Kaestner, “Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger,” Soil Biol. Biochem. 43 (9), 1936–1942 (2011). https://doi.org/10.1016/j.soilbio.2011.05.021

    Article  Google Scholar 

  29. J. Lehmann, J. Gaunt, and M. Rondon, “Bio-char sequestration in terrestrial ecosystems—a review,” Mitigation Adapt. Strategies Global Change 11 (2), 403–427 (2006). https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  30. J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, “Biochar effects on soil biota—a review,” Soil Biol. Biochem. 43 (9), 1812–1836 (2011). https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  31. E. Liu, C. Yan, X. Mei, Y. Zhang, and T. Fan, “Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China,” PLoS One 8 (2), 56536 (2013). https://doi.org/10.1371/journal.pone.0056536

    Article  Google Scholar 

  32. Y. Luo, M. Durenkamp, M. De Nobili, Q. Lin, B. J. Devonshire, and P. C. Brookes, “Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH,” Soil Biol. Biochem. 57, 513–523 (2013).

    Article  Google Scholar 

  33. D. A. Martens, J. B. Johanson, and W. T. Frankenberger Jr., “Production and persistence of soil enzymes with repeated addition of organic residues”, Soil Sci. 153, 53–61 (1992).

    Article  Google Scholar 

  34. A. K. Mensah and K. A. Frimpong, “Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana,” Int. J. Agron. 2018, 6837404 (2018). https://doi.org/10.1155/2018/6837404

    Article  Google Scholar 

  35. D. Meyer-Kohlstock, T. Schmitz, and E. Kraft, “Organic waste for compost and biochar in the EU: mobilizing the potential,” Resources 4 (3), 457–475 (2015). https://doi.org/10.3390/resources4030457

    Article  Google Scholar 

  36. M. Mierzwa-Hersztek, K. Gondek, and A. Baran, “Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth,” Appl. Soil Ecol. 105, 144–150 (2016). https://doi.org/10.1016/j.apsoil.2016.04.006

    Article  Google Scholar 

  37. R. E. Nelson, “Carbonate and gypsum,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agronomic Monograph vol. 9, Ed. by A. L. Page (American Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 181–197.

  38. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods, SSSA Book Series vol. 5 (Soil Science Society of America, American Society of Agronomy, Madison, WI, 1996), pp. 961–1010.

  39. J. Paz-Ferreiro and S. Fu, “Biological indices for soil quality evaluation: perspectives and limitations,” Land Degrad. Dev. 27, 14–25 (2016). https://doi.org/10.1002/ldr.2262

    Article  Google Scholar 

  40. F. A. Petter, L. F. C. Leite, D. M. de Machado, B. H. de Marimon Júnior, L. B. de Lima, O. S. Freddi, and A. S. F. Araújo, “Microbial biomass and organic matter in an oxisol under application of biochar,” Soil Sci. Plant Nutr. 78 (1), 109–118 (2019). https://doi.org/10.1590/1678-4499.2018237

    Article  Google Scholar 

  41. C. Plaza, B. Giannetta, J. M. Fernández, E. G. López-de-Sá, A. Polo, G. Gascó, A. Méndez, and C. Zaccone, “Response of different soil organic matter pools to biochar and organic fertilizers,” Agric. Ecosyst. Environ. 225, 150–159 (2016). https://doi.org/10.1016/j.agee.2016.04.014

    Article  Google Scholar 

  42. E. Y. Rizhiya, N. P. Buchkina, I. M. Mukhina, A. S. Belinets, and E. V. Balashov, “Effect of biochar on the properties of Loamy Sand Spodosol soil samples with different fertility levels: a laboratory experiment,” Eurasian Soil Sci. 48, 192–200 (2015). https://doi.org/10.1134/S1064229314120084

    Article  Google Scholar 

  43. M. H. Roozitalab, H. Siadat, and A. Farshad, The Soils of Iran (Springer-Verlag, Cham, 2018).

    Book  Google Scholar 

  44. M. E. Saleh, A. H. Mahmoud, and M. Rashad, “Biochar usage as a cost-effective bio-sorbent for removing NH4-N from wastewater,” in Proceedings of the International Conference “The Global Climate Change, Biodiversity and Sustainability: Challenges and Opportunities in Arab MENA region and EuroMed,” April 15–18, 2013 (Alexandria, 2013).

  45. P. Sarkar and R. Chourasia, “Bioconversion of organic solid wastes into fortified compost using a microbial consortium,” Int. J. Recycl. Org. Waste Agric. 6 (4), 321–334 (2017). https://doi.org/10.1007/s40093-019-0243-0

    Article  Google Scholar 

  46. K. Singh, “Microbial and enzyme activities of saline and sodic Soils,” Land Degrad. Dev. 27, 706–718 (2016). https://doi.org/10.1002/ldr.2385

    Article  Google Scholar 

  47. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure, 2008. http://www.nrel.gov/biomass/ analytical_procedures.html.

  48. Soil Survey Staff, Keys to Soil Taxonomy, 12th ed. (USDA-Natural Resources Conservation Service, Washington, DC, 2014).

    Google Scholar 

  49. D. Song, J. Tang, X. Xi, S. Zhang, G. Liang, W. Zhou, and X. Wang, “Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil,” Eur. J. Soil Biol. 84, 1–10 (2018). https://doi.org/10.1016/j.ejsobi.2017.11.003

    Article  Google Scholar 

  50. M. A. Tabatabai and J. M. Bremner, “Use of p-nitrophenyl phosphate for assay of soil phosphatase activity,” Soil Biol. Biochem. 1, 301–307 (1969). https://doi.org/10.1016/0038-0717(69)90012-1

    Article  Google Scholar 

  51. N. Teutscherova, B. Lojka, J. Houška, A. Masaguer, M. Benito, and E. Vazquez, “Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils,” Eur. J. Soil Biol. 88, 15–26 (2018). https://doi.org/10.1016/j.ejsobi.2018.06.002

    Article  Google Scholar 

  52. S. Tripathi, A. Chakraborty, K. Chakrabarti, and B. K. Bandyopadhyay, “Enzyme activities and microbial biomass in coastal soils of India,” Soil Biol. Biochem. 39 (11), 2840–2848 (2007). https://doi.org/10.1016/j.soilbio.2007.05.027

    Article  Google Scholar 

  53. D. Trupiano, C. Cocozza, S. Baronti, C. Amendola, F. P. Vaccari, G. Lustrato, R. Tognetti, and G. S. Scippa, “The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance,” Int. J. Agron. 2017, 3158207 (2017). https://doi.org/10.1155/2017/3158207

    Article  Google Scholar 

  54. I. Turgut, U. Bilgili, A. Duman, and E. Acikgoz, “Effect of green manuring on the yield of sweet corn,” Agron. Sustainable Dev. 25 (4), 433–438 (2005). https://doi.org/10.1051/agro:2005044

    Article  Google Scholar 

  55. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  56. A. Walkely and I. A. Black, “An examination of the Degtjareff methods for determining soil organic matter and a proposed modification of the chromic acid titration method,” Soil Sci. 37, 29–38 (1934). https://doi.org/10.1097/00010694-193401000-00003

    Article  Google Scholar 

  57. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  58. L. Yang, T. Li, F. Li, J. H. Lemcoff, and S. Cohen, “Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field,” Sci. Hortic. (Amsterdam) 116, 21–26 (2008).

    Article  Google Scholar 

  59. S. W. Zaidun, M. B. Jalloh, A. Awang, L. M. Sam, N. A. Besar, B. Musta, O. H. Ahmed, and L. Omar, “Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.),” Eur. J Soil Sci. 8 (1), 1–10 (2019). https://doi.org/10.18393/ejss.468100

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the University of Zanjan (ZNU). Also, Special thanks to Prof. Hossain Besharati (besharati@swri.ir) in Soil and Water Research Institute of Karaj—Iran and Dr. Jan Mumme (jan.mumme@ed.ac.uk) in Biochar Research Centre, University of Edinburgh, U.K for reading and improving the article and for proposing very good comments and Mr. Markus Guenther (markus.guenther@tu-dresden.de) in TU Dresden- Germany for providing the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Delavar.

Ethics declarations

The authors declare that there are no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourmandipour, F., Delavar, M.A., Lal, R. et al. Effects of Organic Amendments on Enzymes Activities in a Calcareous Sandy Soil. Eurasian Soil Sc. 54, 271–284 (2021). https://doi.org/10.1134/S1064229321020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321020113

Keywords:

Navigation