Skip to main content
Log in

Impact of relative humidity and water availability on the life history of the predatory mite Amblyseius swirskii

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) is currently used as an efficient biological control agent of thrips, whiteflies and spider mites, which are economically damaging pests of ornamental plants and vegetable crops grown in greenhouses and fields worldwide. Currently, the effects of relative humidity (RH) and water availability on the optimal growth of A. swirskii are unknown. Here, we test the combined effects of different levels of RH (33%, 53%, 73% and 92%) and water availability on the development and reproduction of male and female A. swirskii feeding on the dried fruit mite, Carpoglyphus lactis (Linnaeus). While eggs failed to hatch at 33% RH, the survival rates of the immature stages at ≥ 53% RH increased solely in response to water availability and not due to changes in RH. Regarding growth and development, low RH extended the egg–adult duration and pre-oviposition period. We also found that the negative effects of low RH on fecundity were partially or completely eliminated when drinking water was available. For the life table parameters, the highest values of net reproductive rate (R0) and intrinsic rate of natural increase (r) were achieved at the highest RH and when drinking water was available. Overall, water availability mitigated the negative effect of low RH on female reproduction, and female development was more sensitive to water availability than male development. Lastly, a comparison of similar research on A. swirskii suggested that water availability and RH are more influential on r than food source or temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Awad BA, Reda AS (1992) Studies on copulation, egg production and sex-ratio of the predaceous mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae). J Appl Ent 113:472–475

    Article  Google Scholar 

  • Arlian LG (1975) Dehydration and survival of the European house dust mite, Dermatophagoides pteronyssinus. J Med Ent 12:437–444

    Article  CAS  Google Scholar 

  • Arlian LG, Veselica MM (1979) Water balance in insects and mites. Comp Biochem Physiol A 64:191–200

    Article  Google Scholar 

  • Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. Exp Appl Acarol 17:97–113

    Google Scholar 

  • Bazgir F, Shakarami J, Jafari S (2018) Life table and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae). Syst Appl Acarol 23:1614–1626

    Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Article  Google Scholar 

  • Blommers L, Lobbes P, Vink P, Wegdam F (1977) Studies on the response of Amblyseius bibens (Acarina: Phytoseiidae) to condition of prey scarcity. Entomophaga 22:247–258

    Article  Google Scholar 

  • Bolckmans KJF, van Houten YM (2006) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius swirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop. WO Patent WO/2006/057552

  • Boudreaux HB (1963) Biological aspects of some phytophagous mites. Annu Rev Entomol 8:137–154

    Article  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L, Scott-Dupree C (2015) Amblyseius swirskii in greenhouse production systems: a floriculture perspective. Exp Appl Acarol 65:451–464

    Article  PubMed  Google Scholar 

  • Buxton PA (1932) Terrestrial insects and the humidity of the environment. Biol Rev 7:275–320

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56:185–192

    Article  Google Scholar 

  • Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34

    Article  Google Scholar 

  • Chi H (2020) TWOSEX-MSChart: a computer program for the age stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip. Accessed 8 Jan 2021

  • Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240

    Google Scholar 

  • Cloutier C, Arodokoun D, Johnson SG, Gelinas L (1995) Thermal dependence of Amblyseius cucumeris (Acarina: Phytoseiidae) and Orius insidiosus (Heteroptera: Anthocoridae) in greenhouses. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. NATO ASI Series (Series A: Life Sciences), vol 276. Springer, Boston, pp 231–235

    Google Scholar 

  • Colloff MJ (2009) Dust mites. CSIRO Publishing and Springer Science, Dordrecht

    Book  Google Scholar 

  • Demetrius L (1978) Adaptive value, entropy and survivorship curves. Nature 275:213–214

    Article  CAS  PubMed  Google Scholar 

  • Dinh NV, Sabelis MW, Janssen A (1988) Influence of humidity and water availability on the survival of Amblyseius idaeus and A. anonymus (Acarina: Phytoseiidae). Exp Appl Acarol 4:27–40

    Article  Google Scholar 

  • El-Laithy AYM, Fouly AH (1992) Life table parameters of the two phytoseiid predators Amblyseius scutalis (Athias-Henriot) and A. swirskii A.-H. (Acari, Phytoseiidae) in Egypt. J Appl Entomol 113:8–12

    Article  Google Scholar 

  • Fatnassi H, El Arnaouty SA, Brun R, Pizzol J, Kortam M (2015) Dispersal and maintenance of Neoseiulus cucumeris Oudemans and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) to control Thrips in greenhouse crops as influenced by micro habitat environment. Egypt J Biol Pest Control 25:703–707

    Google Scholar 

  • Ferrero M, Gigot C, Tixier MS, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244

    Article  Google Scholar 

  • Fischer K, Fiedler K (2000) Sex-related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera: Lycaenidae). Oikos 90:372–380

    Article  Google Scholar 

  • Frazier MR, Huey RB, Berrigan D (2006) Thermodynamics constrains the evolution of insect population growth rates: “warmer is better.” Am Nat 168:512–520

    Article  CAS  PubMed  Google Scholar 

  • Freriksen A, Seykens D, Heinstra PWH (1994) Differences between larval and adult Drosophila in metabolic degradation of ethanol. Evolution 48:504–508

    Article  CAS  PubMed  Google Scholar 

  • Gaede K (1992) On the water balance of Phytoseiulus persimilis A.-H. and its ecological significance. Exp Appl Acarol 15:181–198

    Article  Google Scholar 

  • Ghazy NA, Osakabe M, Negm MW, Schausberger P, Gotoh T, Amano H (2016) Phytoseiid mites under environmental stress. Biol Control 96:120–134

    Article  Google Scholar 

  • Gillespie DR, Opit G, Roitberg B (2000) Effects of temperature and relative humidity on development, reproduction, and predation in Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae). Biol Control 17:132–138

    Article  Google Scholar 

  • Gómez-Moya CA, Gondim MGC, de Moraes GJ, de Morais EGF (2018) Effect of relative humidity on the biology of the predatory mite Amblyseius largoensis (Acari: Phytoseiidae). Int J Acarol 44:400–411

    Article  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic Press, San Diego

    Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites. Their biology, natural enemies and control. World crop pests, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Ji J, Lin T, Zhang YX, Lin JZ, Sun L, Chen X (2013) A comparison between Amblyseius (Typhlodromips) swirskii and Amblyseius eharai with Panonychus citri (Acari: Tetranychidae) as prey: developmental duration, life table and predation. Syst Appl Acarol 18:123–129

    Google Scholar 

  • Kim T, Ahn J, Lee JH (2009) Temperature-dependent developmental model of Neoseiulus californicus (McGregor) (Acari, Phytoseiidae). J Appl Entomol 133:284–291

    Article  Google Scholar 

  • Kumari M, Sadana GL (1991) Influence of temperature and relative humidity on the development of Amblyseius alstoniae (Acari: Phytoseiidae). Exp Appl Acarol 11:199–203

    Article  Google Scholar 

  • Lavadinho AMP (1975) Variation of adult body weight in Sitophilus granarius (L.) from laboratory cultures. J Stored Prod Res 11:33–39

    Article  Google Scholar 

  • Lee HS, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27

    Article  PubMed  Google Scholar 

  • Liu JF, Zhang ZQ (2017) Development, survival and reproduction of a New Zealand strain of Amblydromalus limonicus (Acari: Phytoseiidae) on Typha orientalis pollen, Ephestia kuehniella eggs, and an artificial diet. Int J Acarol 43:153–159

    Article  Google Scholar 

  • McMurtry JA (1980) Biosystematics of three taxa in the Amblyseius finlandicus group from South Africa, with comparative life history studies (Acari: Phytoseiidae). Int J Acarol 6:147–156

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, Mahr DL, Johnson HG (1976) Geographic races in the predaceous mite, Amblyseius potentillae (Acari: Phytoseiidae). Int J Acarol 2:23–28

    Article  Google Scholar 

  • Mellanby K (1958) Water content and insect metabolism. Nature 181:1403

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Midthassel A, Leather SR, Baxter IH (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp Appl Acarol 61:69–78

    Article  PubMed  Google Scholar 

  • Momen FM, Abdel-Khalek A (2008) Effect of the tomato rust mite Aculops lycopersici (Acari: Eriophyidae) on the development and reproduction of three predatory phytoseiid mites. Int J Trop Insect Sci 28:53–57

    Article  Google Scholar 

  • Momen FM, El-Saway SA (1993) Biology and feeding behaviour of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 34:199–204

    Google Scholar 

  • Mutisya DL, Kariuki CW, Khamala CPM (2010) Growth and development of the cassava predatory mite Typhlodromalus aripo (Acari: Phytoseiidae) under different relative humidity regimes. E Afr Agric For J 76:97–102

    Google Scholar 

  • Nguyen DT, Vangansbeke D, Lü X, de Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. BioControl 58:369–377

    Article  CAS  Google Scholar 

  • Nobel-Nesbitt J (1969) Water balance in the firebrat, Thermobia domestica (Packard). Exchanges of water with the atmosphere. J Exp Biol 50:745–769

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  CAS  PubMed  Google Scholar 

  • Park HH, Shipp L, Buitenhuis R, Ahn JJ (2011) Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). J Asia Pac Entomol 14:497–501

    Article  Google Scholar 

  • Perring TM, Lackey LJ (1989) Temperature and humidity effects on mortality and pre-adult development of two Phytoseiulus persimilis strains (Acari: Phytoseiidae). Int J Acarol 15:47–52

    Article  Google Scholar 

  • Riahi E, Fathipour Y, Talebi AA, Mehrabadi M (2017) Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Ann Entomol Soc Am 110:244–253

    Google Scholar 

  • Rivard I (1961) Influence of temperature and humidity on mortality and rate of development of immature stages of the mite Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) reared on mold cultures. Can J Zool 39:419–426

    Article  Google Scholar 

  • Sabelis MW (1981) Biological control of two-spotted spider mites using phytoseiid predators. Part I: modelling the predator-prey interaction at the individual level. Agric Res Rep Pudoc, Wageningen 910:238–242

    Google Scholar 

  • Saber SA, Momen FM (2000) Effects of mating factors on reproduction and sex-ratio of the predacious mite Amblyseius zaheri Yous. and El-Bor. (Acari, Phytoseiidae). J Pest Sci 73:113–115

    Article  Google Scholar 

  • San PP, Tuda M, Nakahira K, Takagi M (2020) Optimal rearing medium for the population growth of the predatory mite, Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae). Egypt J Biol Pest Control 30:130

    Article  Google Scholar 

  • Schausberger P (1998) The influence of relative humidity on egg hatch in Euseius filandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). J Appl Entomol 122:497–500

    Article  Google Scholar 

  • Shimoda T, Kagawa Y, Yoshizawa H, Nakano A, Matsuhira K, Yanagita H, Shimomoto M, Adachi-H T, Mori K, Hinomoto N, Hiraoka T, Nakajima T (2019) Moisturized sheltered sachets are potentially useful for the efficient release of selected predators in a wide range of humidity environments. BioControl 64:65–75

    Article  Google Scholar 

  • Shipp JL, Ward KI, Gillespie TJ (1996) Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite, Amblyseius cucumeris, on Frankliniella occidentalis. Entomol Exp Appl 78:31–38

    Article  Google Scholar 

  • Shipp L, Johansen N, Vanninen I, Jocobson R (2009) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hortic (ISHS) 893:133–143

    Google Scholar 

  • Southwood TRE, May RM, Hassell MP, Conway GR (1974) Ecological strategies and population parameters. Am Nat 108:791–804

    Article  Google Scholar 

  • Stenseth C (1979) Effect of temperature and humidity on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acarina: Phytoseiidae, Tetranychidae). Entomophaga 24:311–317

    Article  Google Scholar 

  • Swift FC, Blaustein L (1980) Humidity tolerances of 3 species of phytoseiid mites (Acarina: Phytoseiidae). J N Y Entomol Soc 88:77

    Google Scholar 

  • Toyoshima S, Amano H (1998) Effect of prey density on sex ratio of two predacious mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Exp Appl Acarol 22:709–723

    Article  Google Scholar 

  • Tuda M (2011) Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status. Bull Entomol Res 101:415–422

    Article  CAS  PubMed  Google Scholar 

  • Tuda M, Ronn J, Buranapanichpan S, Wasano N, Arnqvist G (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Mol Ecol 15:3541–3551

    Article  CAS  PubMed  Google Scholar 

  • Ustchekow AT, Begljarow GA (1968) Effect of the temperature and humidity on the development of predatory mite Phytoseiulus persimilis A.-H. In: Proceedings of the XIIIth congress of entomology Moskva 198–199

  • Walzer A, Castagnoli M, Simoni S (2007) Intraspecific variation in humidity susceptibility of the predatory mite Neoseiulus californicus: survival, development and reproduction. Biol Control 41:42–52

    Article  Google Scholar 

  • Wharton GW (1985) Water balance of insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford, pp 565–603

    Google Scholar 

  • Wharton GW, Devine TL (1968) Exchange of water between a mite Laelaps echidnina and the surrounding air under equilibrium conditions. J Insect Physiol 14:1303–1318

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1942) The principles of insect physiology, 2nd edn. Methuen, London

    Google Scholar 

  • Williams MEDC, Kravar-Garde L, Fenlon JS, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13

    Article  Google Scholar 

  • Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237

    Article  Google Scholar 

  • Yoder JA (1998) A comparison of the water balance characteristics of Typhlodromus occidentalis and Amblyseius finlandicus mites (Acari: Phytoseiidae) and evidence for the site of water vapour uptake. Exp Appl Acarol 22:279–286

    Article  Google Scholar 

  • Yousef AA, El-Keifl AH, Metwally AM (1982) Effect of temperature and photoperiod on the development, fecundity and longevity of Amblyseius swirskii Ath.-Henr. (Acari, Gamasida, Phytoseiidae). Anz Schadlingskde Pflanzenschutz Umweltschutz 55:107–109

    Article  Google Scholar 

Download references

Acknowledgements

PPS thanks the Japan International Cooperation Center (JICE) for providing financial support. MT was supported by Kyushu University. We thank J. Miksanek for comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phyu Phyu San or Midori Tuda.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest. There is no financial or other dependency between authors and any of the companies considered.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants or vertebrates performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: Eric Riddick.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San, P.P., Tuda, M. & Takagi, M. Impact of relative humidity and water availability on the life history of the predatory mite Amblyseius swirskii. BioControl 66, 497–510 (2021). https://doi.org/10.1007/s10526-021-10081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-021-10081-y

Keywords

Navigation