Skip to main content
Log in

NARX model-based dynamic parametrical model identification of the rotor system with bolted joint

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This article presents a novel system identification method for the dynamic parametrical model of the rotor-bearing system based on the Nonlinear Auto-Regressive with exogenous inputs (NARX) model, where the physical parameter of the system appears as coefficients in the model. Customarily, the NARX model-based modeling techniques require random signals as input, which leads to the rotor-bearing system that cannot be modeled using such techniques. To solve this issue, an improved system identification method, defined as the frequency sweep system identification approach is proposed in this paper. Firstly, the frequency domain version modeling framework with a physical parameter is derived based on the traditional modeling framework of the dynamic parametrical model. And then, the candidate model term dictionary corresponding to the frequency domain version modeling framework is derived. The Predicted Residual Sums of Squares based Extended Forward Orthogonal Regression algorithm is applied to identify the dynamic parametrical model of the rotor system. The model obtained by using the proposed method is validated based on the Model Predicted Output method. Finally, an experimental case of the rotor-bearing test rig is demonstrated to show the feasibility of the proposed method for real-world scenarios. Both the numerical and experimental studies illustrating the feasibility of the proposed modeling method, which provides a reliable model for time-domain response prediction and dynamic analysis of the rotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({\mathbf{C}}_{L}^{b}\), \({\mathbf{C}}_{R}^{b}\) :

Damping matrices of the left and right shafts

\({\mathbf{G}}_{k}\) :

Matrix of coefficients corresponding to \({\mathbf{W}}_{k}\)

\({\mathbf{G}}_{J}^{e}\) :

Gyroscopic matrix of the jointed element

\(J_{p1}\), \(J_{p2}\) :

Polar moments of inertia of disk 1 and disk 2

\(J_{d1}\), \(J_{d2}\) :

Equatorial moment of inertia of disk 1 and disk 2

\(k_{B}\) :

Contact stiffness of ball bearing

\({\mathbf{K}}_{J}^{e}\) :

Stiffness matrix of the jointed element

\({\mathbf{K}}_{L}^{b}\), \({\mathbf{K}}_{R}^{b}\) :

Stiffness matrices of the left and right shafts

\(m_{{1}}\), \(m_{{2}}\) :

Lumped mass of disk 1 and disk 2

\(M\) :

Total number of potential model terms

\({\mathbf{M}}_{J}^{e}\) :

Mass matrix of the jointed element

\({\mathbf{M}}_{L}^{b}\), \({\mathbf{M}}_{R}^{b}\) :

Mass matrices of the left and right shafts

\(N_{b}\) :

Number of balls in the bearing

\(n_{u}\), \(n_{y}\) :

Maximum time delay of system input and output

\({\mathbf{P}}_{k}\) :

Time-domain version model term dictionary

\({\tilde{\mathbf{P}}}_{k}\) :

Frequency domain version model term dictionary

\({\hat{\mathbf{P}}}_{k}\) :

Frequency domain version model term dictionary used for identification

\({\mathbf{Q}}_{L}^{s}\), \({\mathbf{Q}}_{R}^{s}\) :

External force matrices acting on both sides of the system

\(u,\;w\) :

Lateral displacement

\({\mathbf{W}}_{k}\) :

Orthogonal matrix of \({\hat{\mathbf{P}}}_{k}\)

\({\tilde{\mathbf{Y}}}_{k}\) :

System output in frequency-domain

\(j\omega\) :

Harmonic components in the frequency spectrum

\(\Omega\) :

Rotating speed of the rotor system

\(\Phi_{0}\) :

Relative rotation angle at the transition point

\(\Phi\) :

Relative rotation angle between disk1 and disk2

\({{\varvec{\upxi}}}\) :

Physical parameter vector

\(\it {{\varvec{\uptheta}}}_{k}\) :

Coefficient matrix corresponding to the kth physical parameter value

\(\theta_{j}\) :

Angle location of the jth rolling ball

\(\theta ,\;\varphi\) :

Angular displacement about x and y axes

\(\it {{\varvec{\updelta}}}_{J}^{e}\) :

Displacement vector of the bolted joint structure

\(\it {{\varvec{\updelta}}}\) :

Generalized coordinates of the whole system

\({\text{DTFT}}[ \cdot ]\) :

Discrete-time Fourier transform

\(H( \cdot )\) :

Heaviside function

EFOR:

Extended forward orthogonal regression

PRESS:

Predicted residual sums of squares

CMS:

Common model structure

EFOR:

Extended forward orthogonal regression

PRESS:

Predicted residual sums of squares

CMS:

Common model structure

References

  1. Hu, L., Liu, Y., Zhao, L., Zhou, C.: Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic. Arch. Appl. Mech. 86(11), 1869–1886 (2016)

    Article  Google Scholar 

  2. Qin, Z.Y., Chu, F.L., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  3. Qin, Z.Y., Yang, Z.B., Zu, J., Chu, F.L.: Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int. J. Mech. Sci. 142–143, 127–139 (2018)

    Article  Google Scholar 

  4. Corral, R., Khemiri, O., Martel, C.: Design of mistuning patterns to control the vibration amplitude of unstable rotor blades. Aerosp. Sci. Technol. 80, 20–28 (2018)

    Article  Google Scholar 

  5. Nan, X., Ma, N., Lin, F., Himeno, T., Watanabe, T.: a new approach of casing treatment design for high speed compressors running at partial speeds with low speed large scale test. Aerosp. Sci. Technol. 72, 104–113 (2018)

    Article  Google Scholar 

  6. Zeng, J., Zhao, C., Ma, H., Yu, K., Wen, B.: Rubbing dynamic characteristics of the blisk-casing system with elastic supports. Aerosp. Sci. Technol. 95, 105481 (2019)

    Article  Google Scholar 

  7. Eryilmaz, I., Guenchi, B., Pachidis, V.: Multi-blade shedding in turbines with different casing and blade tip architectures. Aerosp. Sci. Technol. 87, 300–310 (2019)

    Article  Google Scholar 

  8. Qin, Y., Wang, Z.X., Chan, F.T.S., Chung, S.H., Qu, T.: A mathematical model and algorithms for the aircraft hangar maintenance scheduling problem. Appl. Math. Model. 67, 491–509 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, F., Wang, C., Chen, X., Yue, C., Xie, Y., Chai, L.: High-precision control method for the satellite with large rotating components. Aerosp. Sci. Technol. 92, 91–98 (2019)

    Article  Google Scholar 

  10. Luo Z., Li Y., Li L., Liu Z.: Nonlinear dynamic properties of the rotor-bearing system involving bolted disk-disk joint. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2141154096 (2020)

  11. Sun, W., Li, T., Yang, D., Sun, Q., Huo, J.: Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints. Eng. Fail. Anal. 112, 104510 (2020)

    Article  Google Scholar 

  12. Wang, L., Wang, A., Jin, M., Huang, Q., Yin, Y.: Nonlinear effects of induced unbalance in the rod fastening rotor-bearing system considering nonlinear contact. Arch. Appl. Mech. 90(5), 917–943 (2020)

    Article  Google Scholar 

  13. Liu, Y., Liu, H., Yi, J., Jing, M.: Investigation on the stability and bifurcation of a rod-fastening rotor bearing system. J. Vib. Control 21(14), 2866–2880 (2013)

    Article  Google Scholar 

  14. Liu, H., Zhu, Y., Luo, Z., Wang, F.: Identification of the dynamic parametrical model with an iterative orthogonal forward regression algorithm. Appl. Math. Model. 64, 643–653 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X., Zhang, W., Xu, N., Ding, Q.: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places. IEEE Trans. Ind. Electron. 67(8), 6785–6794 (2020)

    Article  Google Scholar 

  16. Zhang, W., Li, X., Jia, X., Ma, H., Luo, Z., Li, X.: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks. Measurement 152, 107377 (2020)

    Article  Google Scholar 

  17. Akinola, T.E., Oko, E., Gu, Y., Wei, H., Wang, M.: Non-linear system identification of solvent-based post-combustion CO2 capture process. Fuel 239, 1213–1223 (2019)

    Article  Google Scholar 

  18. Ge, X.B., Luo, Z., Ma, Y., Liu, H.P., Zhu, Y.P.: A novel data-driven model based parameter estimation of nonlinear systems. J. Sound Vib. 453, 188–200 (2019)

    Article  Google Scholar 

  19. Ayala Solares, J.R., Wei, H.: Nonlinear model structure detection and parameter estimation using a novel bagging method based on distance correlation metric. Nonlinear Dyn. 82(1–2), 201–215 (2015)

    Article  Google Scholar 

  20. Rashid, M.T., Frasca, M., Ali, A.A., Ali, R.S., Fortuna, L., Xibilia, M.G.: Nonlinear model identification for Artemia population motion. Nonlinear Dyn. 69(4), 2237–2243 (2012)

    Article  MathSciNet  Google Scholar 

  21. Bayma, R.S., Zhu, Y.P., Lang, Z.Q.: The analysis of nonlinear systems in the frequency domain using nonlinear output frequency response functions. Automatica 94, 452–457 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peng, Z.K., Lang, Z.Q., Wolters, C., Billings, S.A., Worden, K.: Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 25(3), 1045–1061 (2011)

    Article  Google Scholar 

  23. Araújo, Í.B.Q., Guimarães, J.P.F., Fontes, A.I.R., Linhares, L.L.S., Martins, A.M., Araújo, F.M.U.: NARX model identification using correntropy criterion in the presence of non-gaussian noise. J. Control. Autom. Electr. Syst. 30(4), 453–464 (2019)

    Article  Google Scholar 

  24. Huang, H., Mao, H., Mao, H., Zheng, W., Huang, Z., Li, X., Wang, X.: Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling. J. Sound Vib. 411, 75–87 (2017)

    Article  Google Scholar 

  25. Ayala Solares, J.R., Wei, H., Boynton, R.J., Walker, S.N., Billings, S.A.: Modeling and prediction of global magnetic disturbance in near-Earth space: a case study for Kp index using NARX models. Space Weather 14(10), 899–916 (2016)

    Article  Google Scholar 

  26. Wei, H.L., Lang, Z.Q., Billings, S.A.: Constructing an overall dynamical model for a system with changing design parameter properties. Int. J. Model. Ident. Control 5(2), 93–104 (2008)

    Article  Google Scholar 

  27. Zhu, Y., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 99, 1–14 (2017)

    Google Scholar 

  28. Samara, P.A., Sakellariou, J.S., Fouskitakis, G.N., Hios, J.D., Fassois, S.D.: Aircraft virtual sensor design via a time-dependent functional pooling NARX methodology. Aerosp. Sci. Technol. 29(1), 114–124 (2013)

    Article  Google Scholar 

  29. Ma, Y., Liu, H., Zhu, Y., Fei, W., Zhong, L.: The NARX model-based system identification on nonlinear, rotor-bearing systems. Appl. Sci. 7(9), 911 (2017)

    Article  Google Scholar 

  30. Westwick, D.T., Hollander, G., Karami, K., Schoukens, J.: Using decoupling methods to reduce polynomial NARX Models. IFAC-PapersOnLine 51(15), 796–801 (2018)

    Article  Google Scholar 

  31. Cheng Z., Xu J., Wu M., Li F., Guo S.: Modeling of gyro-stabilized platform based on NARX neural network, pp.284–288 (2017)

  32. Liu, H., Zhu, Y., Luo, Z., Han, Q.: PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems. Front. Mech. Eng. 13(3), 390–400 (2018)

    Article  Google Scholar 

  33. Zhu, Y., Lang, Z.Q.: The effects of linear and nonlinear characteristic parameters on the output frequency responses of nonlinear systems: The associated output frequency response function. Automatica 93, 422–427 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo, Y., Guo, L.Z., Billings, S.A., Wei, H.: An iterative orthogonal forward regression algorithm. Int. J. Syst. Sci. 46(5), 776–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, P., Wei, H., Billings, S.A., Balikhin, M.A., Boynton, R.: Nonlinear model identification from multiple data sets using an orthogonal forward search algorithm. J. Comput Nonlin Dyn 4(8), 41001 (2013)

    Article  Google Scholar 

  36. Billings, S.A.: Nonlinear System Identification: NARMAX Methods Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  37. Wolberg, J.: Data Analysis Using the Least-Squares Method. Springer, Berlin (2006)

    Google Scholar 

  38. Favier, G., Kibangou, A.Y., Bouilloc, T.: Nonlinear system modeling and identification using Volterra-PARAFAC models. Int. J. Adapt. Control 26(1), 30–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Abdelwahed, I.B., Mbarek, A., Bouzrara, K., Garna, T.: Nonlinear system modeling based on NARX model expansion on Laguerre orthonormal bases. IET Signal Process. 12(2), 228–241 (2018)

    Article  Google Scholar 

  40. Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016)

    Article  Google Scholar 

  41. Li, Y., Luo, Z., Liu, Z., Hou, X.: Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings. Arch. Appl. Mech. 11(89), 2381–2395 (2019)

    Article  Google Scholar 

  42. Liu, S., Ma, Y., Zhang, D., Hong, J.: Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mech. Syst. Signal Pr. 29, 120–136 (2012)

    Article  Google Scholar 

  43. Brake, M.R.W.: The Mechanics of Jointed Structures. Springer, Berlin (2018)

    Book  Google Scholar 

  44. Zou, D., Zhao, H., Liu, G., Ta, N., Rao, Z.: Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: theory and experiment. J. Sound Vib. 463, 114972 (2019)

    Article  Google Scholar 

  45. Briend, Y., Dakel, M., Chatelet, E., Andrianoely, M., Dufour, R., Baudin, S.: Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems. Mech. Mach. Theory 145, 103660 (2020)

    Article  Google Scholar 

  46. Chen, G.: Vibration modelling and verifications for whole aero-engine. J. Sound Vib. 349, 163–176 (2015)

    Article  Google Scholar 

  47. Rao D K., Swain A., Roy T.: Dynamic responses of bidirectional functionally graded rotor shaft. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1713804

  48. Gupta, T.C.: Parametric studies on dynamic stiffness of ball bearings supporting a flexible rotor. J. Vib. Control 25(15), 2175–2188 (2019)

    Article  MathSciNet  Google Scholar 

  49. Hu, L., Liu, Y., Zhao, L., Zhou, C.: Nonlinear dynamic behaviors of circumferential rod fastening rotor under unbalanced pre-tightening force. Arch. Appl. Mech. 86(9), 1621–1631 (2016)

    Article  Google Scholar 

  50. Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  51. Zhou, Y., Luo, Z., Bian, Z., Wang, F.: Nonlinear vibration characteristics of the rotor bearing system with bolted flange joints. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 233(4), 910–930 (2019)

    Google Scholar 

  52. Maraini, D., Nataraj, C.: Nonlinear analysis of a rotor-bearing system using describing functions. J. Sound Vib. 420, 227–241 (2018)

    Article  Google Scholar 

  53. Chen, G.: Study on nonlinear dynamic response of an unbalanced rotor supported on ball bearing. J. Vib. Acoust. 131(6), 1980–1998 (2009)

    Article  Google Scholar 

  54. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk- drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 228(4), 646–663 (2014)

    Article  Google Scholar 

  55. Beaudoin, M., Behdinan, K.: Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings. Mech. Syst. Signal Pr. 115, 14–28 (2019)

    Article  Google Scholar 

  56. Ng, B.C., Darus, I.Z.M., Jamaluddin, H., Kamar, H.M.: Dynamic modelling of an automotive variable speed air conditioning system using nonlinear autoregressive exogenous neural networks. Appl. Therm. Eng. 73(1), 1255–1269 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 11872148, 11572082); the Key research and development projects in Guangdong Province (No.2020B1515120015); the Fundamental Research Funds for the Central Universities of China (Grant No. N2003012, N160312001, N170308028, N180703018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Luo.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The matrices represented in Eq. (27) are as follows:

$${\mathbf{M}}_{J}^{e} { = }\left[ {\begin{array}{*{20}c} {m_{1} } & {} & {} & {} & {} & {} & {} & {} \\ 0 & {m_{2} } & {} & {} & {} & {} & {} & {} \\ 0 & 0 & {J_{d1} } & {} & {} & {{\text{sym}}} & {} & {} \\ 0 & 0 & 0 & {J_{d2} } & {} & {} & {} & {} \\ 0 & 0 & 0 & 0 & {m_{1} } & {} & {} & {} \\ 0 & 0 & 0 & 0 & 0 & {m_{2} } & {} & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & {J_{d1} } & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {J_{d2} } \\ \end{array} } \right]$$
(37)
$${\mathbf{K}}_{J}^{e} = \left[ {\begin{array}{*{20}c} {k_{s} } & {} & {} & {} & {} & {} & {} & {} \\ 0 & {k_{s} } & {} & {} & {} & {} & {} & {} \\ 0 & 0 & {k_{\theta } } & {} & {} & {{\text{sym}}} & {} & {} \\ 0 & 0 & 0 & {k_{\theta } } & {} & {} & {} & {} \\ { - k_{s} } & 0 & 0 & 0 & {k_{s} } & {} & {} & {} \\ 0 & { - k_{s} } & 0 & 0 & 0 & {k_{s} } & {} & {} \\ 0 & 0 & { - k_{\theta } } & 0 & 0 & 0 & {k_{\theta } } & {} \\ 0 & 0 & 0 & { - k_{\theta } } & 0 & 0 & 0 & {k_{\theta } } \\ \end{array} } \right]$$
(38)
$${\mathbf{G}}_{J}^{e} { = }\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - J_{p1} } & 0 & 0 & 0 & 0 \\ 0 & 0 & {J_{p1} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - J_{p2} } \\ 0 & 0 & 0 & 0 & 0 & 0 & {J_{p2} } & 0 \\ \end{array} } \right]$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, Z., Shi, B. et al. NARX model-based dynamic parametrical model identification of the rotor system with bolted joint. Arch Appl Mech 91, 2581–2599 (2021). https://doi.org/10.1007/s00419-021-01906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01906-4

Keywords

Navigation