Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit

Abstract

Computational methods are key in microbiome research, and obtaining a quantitative and unbiased performance estimate is important for method developers and applied researchers. For meaningful comparisons between methods, to identify best practices and common use cases, and to reduce overhead in benchmarking, it is necessary to have standardized datasets, procedures and metrics for evaluation. In this tutorial, we describe emerging standards in computational meta-omics benchmarking derived and agreed upon by a larger community of researchers. Specifically, we outline recent efforts by the Critical Assessment of Metagenome Interpretation (CAMI) initiative, which supplies method developers and applied researchers with exhaustive quantitative data about software performance in realistic scenarios and organizes community-driven benchmarking challenges. We explain the most relevant evaluation metrics for assessing metagenome assembly, binning and profiling results, and provide step-by-step instructions on how to generate them. The instructions use simulated mouse gut metagenome data released in preparation for the second round of CAMI challenges and showcase the use of a repository of tool results for CAMI datasets. This tutorial will serve as a reference for the community and facilitate informative and reproducible benchmarking in microbiome research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAMI benchmarking workflow.
Fig. 2: MetaQUAST assembly benchmarking metrics.
Fig. 3: Assessing metagenome cross-sample assembly quality with MetaQUAST for the CAMI II mouse gut dataset.
Fig. 4: Assessing genome binners on the gold-standard assembly of the CAMI II mouse gut dataset.
Fig. 5: Assessing taxonomic binning results on the CAMI II mouse gut dataset.
Fig. 6: Number of high-quality taxon bins predicted from the CAMI II mouse gut dataset for the phylum to species ranks.
Fig. 7: Assessing taxonomic profiling results on the CAMI II mouse gut dataset.

Similar content being viewed by others

Data availability

The results of all benchmarked methods and gold standards are available at https://zenodo.org/communities/cami. Links to individual results and DOIs are available in Supplementary Tables 1, 4, 8, and 11. The gold-standard assembly is provided with the CAMI II mouse gut dataset (Table 2). Assembly results and code used to generate Fig. 3 are available at https://github.com/CAMI-challenge/BenchmarkingToolkitTutorial. Genome and taxonomic binning, and taxonomic profiling results used in Figs. 47 are available, respectively, in the AMBER and OPAL GitHub repositories at https://github.com/CAMI-challenge/AMBER and https://github.com/CAMI-challenge/OPAL. The code in this paper has been peer-reviewed.

References

  1. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell, A. L. et al. EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res 46, D726–D735 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47, D666–D677 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bansal, V. & Boucher, C. Sequencing technologies and analyses: where have we been and where are we going? iScience 18, 37–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mantere, T., Kersten, S. & Hoischen, A. Long-read sequencing emerging in medical genetics. Front. Genet. 10, 426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mosimann, S., Meleshko, R. & James, M. N. A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins 23, 301–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Andreoletti, G., Pal, L. R., Moult, J. & Brenner, S. E. Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation. Hum. Mutat. 40, 1197–1201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dessimoz, C., Škunca, N. & Thomas, P. D. CAFA and the open world of protein function predictions. Trends Genet 29, 609–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, L. M. et al. Essential guidelines for computational method benchmarking. Genome Biol. 20, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mangul, S. et al. Systematic benchmarking of omics computational tools. Nat. Commun. 10, 1393 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods 4, 495–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Lindgreen, S., Adair, K. L. & Gardner, P. P. An evaluation of the accuracy and speed of metagenome analysis tools. Sci. Rep. 6, 19233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McIntyre, A. B. R. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 18, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye, S. H., Siddle, K. J., Park, D. J. & Sabeti, P. C. Benchmarking metagenomics tools for taxonomic classification. Cell 178, 779–794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bremges, A. & McHardy, A. C. Critical Assessment of Metagenome Interpretation enters the second round. mSystems 3, e00103-18 (2018).

  21. Fritz, A. et al. CAMISIM: simulating metagenomes and microbial communities. Microbiome 7, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 160081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Meyer, F. et al. AMBER: Assessment of Metagenome BinnERs. GigaScience 7, giy069 (2018).

  25. Meyer, F. et al. Assessing taxonomic metagenome profilers with OPAL. Genome Biol. 20, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).

    Article  PubMed  Google Scholar 

  27. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  Google Scholar 

  28. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  29. Belmann, P. et al. Bioboxes: standardised containers for interchangeable bioinformatics software. Gigascience 4, 47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics 33, 2580–2582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mineeva, O., Rojas-Carulla, M., Ley, R. E., Schölkopf, B. & Youngblut, N. D. DeepMAsED: evaluating the quality of metagenomic assemblies. Bioinformatics 36, 3011–3017 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Clark, S. C., Egan, R., Frazier, P. I. & Wang, Z. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 29, 435–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kuhring, M., Dabrowski, P. W., Piro, V. C., Nitsche, A. & Renard, B. Y. SuRankCo: supervised ranking of contigs in de novo assemblies. BMC Bioinforma. 16, 240 (2015).

    Article  Google Scholar 

  39. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gregor, I., Dröge, J., Schirmer, M., Quince, C. & McHardy, A. C. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 4, e1603 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).

    Article  Google Scholar 

  48. Huson, D. H. et al. MEGAN Community Edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).

    Article  Google Scholar 

  53. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Segata, N. On the road to strain-resolved comparative metagenomics. mSystems 3, e00190-17 (2018).

  58. Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 18, 181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27, 626–638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sajulga, R. et al. Survey of metaproteomics software tools for functional microbiome analysis. PLoS ONE 15, e0241503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. B. Pope for helpful comments. A.E.D.’s contribution was facilitated in part by the Australian Research Council’s Discovery Projects funding scheme (project DP180101506). A.G.’s contribution was facilitated by St. Petersburg State University, Russia (grant ID PURE 51555639).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and T.-R.L. performed the experiments; F.M., A.F., T.-R.L., and A.S. prepared the data; A.C.M., A.B., and A.S. conceived the experiments; A.C.M., F.M., and A.B. wrote the manuscript with comments by others; F.M., T.-R.L., D.K., A.F., A.G., A.E.D., A.S., A.B., and A.C.M. interpreted the results, and read and approved the final manuscript.

Corresponding author

Correspondence to Alice C. McHardy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–13, Supplementary Figs. 1 and 2 and Supplementary Note.

Supplementary Data 1

Supplementary Results: MetaQUAST metrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, F., Lesker, TR., Koslicki, D. et al. Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nat Protoc 16, 1785–1801 (2021). https://doi.org/10.1038/s41596-020-00480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00480-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology